K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

Với \(a=b=c=0\Leftrightarrow S=abc=0\)

Với \(a,b,c\ne0\)

Ta có \(\dfrac{a}{1+ab}=\dfrac{b}{1+bc}=\dfrac{c}{1+ac}\Leftrightarrow\dfrac{1+ab}{a}=\dfrac{1+bc}{b}=\dfrac{1+ac}{c}\)

\(\Leftrightarrow\dfrac{1}{a}+b=\dfrac{1}{b}+c=\dfrac{1}{c}+a\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=\dfrac{1}{a}-\dfrac{1}{c}=\dfrac{c-a}{ac}\\b-c=\dfrac{1}{b}-\dfrac{1}{a}=\dfrac{a-b}{ab}\\c-a=\dfrac{1}{c}-\dfrac{1}{b}=\dfrac{b-c}{bc}\end{matrix}\right.\)

Nhân vế theo vế ta đc \(\left(a-b\right)\left(b-c\right)\left(c-a\right)=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{ab\cdot bc\cdot ca}\)

\(\Leftrightarrow\left(abc\right)^2=1\Leftrightarrow\left[{}\begin{matrix}abc=1\\abc=-1\end{matrix}\right.\)

21 tháng 6 2015

\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\)

=\(\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ac}\)

=\(\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc.c}+\frac{1}{1+c+ac}\)

thay abc=1 ta được:

\(\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}\)(cùng mẫu c+ac+1)

=\(\frac{c+ac+1}{c+ac+1}=1\)

vậy S=1

21 tháng 1 2019

\(M=\frac{2018a}{ab+2018a+2018}+\frac{b}{bc+b+2018}+\frac{c}{ac+c+1}\)

\(\Rightarrow M=\frac{2018a}{ab+2018a+2018}+\frac{ab}{a\left(bc+b+2018\right)}+\frac{abc}{ab\left(ac+c+1\right)}\)

\(\Rightarrow M=\frac{2018a}{ab+2018a+2018}+\frac{ab}{ab+2018a+2018}+\frac{1}{ab+2018a+2018}\)

\(\Rightarrow M=\frac{2018a+ab+1}{2018a+ab+1}=1\)

21 tháng 1 2019

Do : \(abc=2018\)nên : \(a,b,c\ne0\)

Ta có : \(M=\frac{2018a}{ab+2018a+2018}+\frac{b}{bc+b+2018}+\frac{c}{ac+c+1}\)

\(=\frac{2018a}{ab+2018a+2018}+\frac{ab}{abc+ab+2018a}+\frac{abc}{a^2bc+abc+ab}\)

\(=\frac{2018a}{ab+2018a+2018}+\frac{ab}{2018+ab+2018a}+\frac{2018}{2018+ab+2018a}\)

\(=\frac{2018a+ab+2018}{ab+2018a+2018}=1\)

28 tháng 3 2019

\(HUY=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{b}{b+bc+abc}=\frac{bc}{bc+1+b}+\frac{1}{1+b+bc}+\frac{b}{b+bc+1}=1\)