Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1 : ( không có 3 điểm nào thẳng hàng)
Số đoạn thẳng là : 4 . ( 4 -1 ) / 2 = 4.3/2 = 6
TH2 : ( bốn điểm thẳng hàng )
, , , ,
Số đoạn thẳng là :
4 . ( 4 - 1) / 2 = 6 (đoạn thẳng)
* Chỉ có đường thẳng mới thay đổi khi có từ 3 điểm thẳng hàng thôi còn đoạn thẳng thì không thay đổi nhé.
Cứ hai điểm tạo thành một đoạn thẳng
Có 5 cách chọn điểm thứ nhất, 4 cách chọn điểm thứ hai, số đoạn thẳng được tạo là:
5 x 4 = 20 (đoạn thẳng)
Theo cách tính trên mỗi đoạn thẳng được tính hai lần. Vậy số đoạn thẳng được tạo là: 20 : 2 =10 (đoạn thẳng)
Kết luận:..
a) Công thức tính số đường thẳng : \(\frac{n.\left(n-1\right)}{2}\) (n là số điểm)
Nếu không có 3 điểm thẳng hàng thì số đường thẳng kẻ được là :
\(\frac{2017.\left(2017-1\right)}{2}=2033136\)(đường thẳng)
Nếu là 7 điểm không thẳng hàng kẻ được số đường thẳng là :\(\frac{7.\left(7-1\right)}{2}=21\)(đường thẳng). Còn nếu là 7 điểm thẳng hàng thì chỉ kẻ được duy nhất 1 đường thẳng.
Số đường thẳng chênh lệch là :
21 - 1 = 20 (đường thẳng)
Số đường thẳng kẻ được từ 2017 điểm trong đó có 7 điểm thẳng hàng là :
2033136 - 20 = 2033116 (đường thẳng)
Đáp số : ..........................
b) Ta có : \(\frac{n.\left(n-1\right)}{2}=153\)
\(\Rightarrow n.\left(n-1\right)=153.2\)
\(n.\left(n-1\right)=306\)
\(n.\left(n-1\right)=2.3^2.17\)
\(n.\left(n-1\right)=18.17\)
\(\Rightarrow n=18\)