Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 3 bi đỏ đứng cạnh nhau gọi nhóm 3 bi đỏ là X, và 3 bi xanh đứng cạnh nhau nên gọi nhóm 3 bi xanh là Y.
Vì xếp vào hộc có 7 ô, có 3 viên bi đỏ chiếm 3 vị trí và 3 viên bi xanh chiếm 3 vị trí, còn lại 1 vị trí trống.
Bước 1: Ta xem chỉ có 3 vị trí để xếp X và Y, có A 3 2 cách.
Bước 2: Ứng với mỗi cách xếp ở bước 1, có 3! cách xếp 3 viên bi đỏ khác nhau, còn 3 viên bi xanh chỉ 1 cách xếp vì chúng giống nhau.
Theo quy tắc nhân có A 3 2 . 3 ! = 36 cách xếp thỏa yêu cầu.
Chọn D.
Bước 1: Xếp 3 bi đỏ khác nhau vào hộp có 7 ô trống có cách.
Bước 2: Xếp 3 bi xanh vào 4 ô trống còn lại,có cách.
Theo quy tắc nhân ta có cách.
Chọn C.
Chọn B
Không gian mẫu là tập hợp tất cả các cách xếp 4 quyển Toán khác nhau và 4 quyển Hóa giống nhau vào 8 trong 10 ô trống.
Khi đó,
Gọi A là biến cố: “ Bốn quyển sách Toán xếp cạnh nhau và 4 quyển sách Hóa xếp cạnh nhau ”.
Để xếp 4 quyển sách Toán cạnh nhau và 4 quyển sách Hóa gần nhau trên giá sách 10 ô trống ta xem như có 4 vị trí để xếp
Xếp 4 quyển toán cạnh nhau có 4! cách, xếp 4 quyển Hóa có 1 cách, sau đó xếp 2 bộ đó vào 2 trong 4 vị trí.
Do đó:
Xác suất để 4 quyển sách Toán cạnh nhau và 4 quyển Hóa cạnh nhau là:
Đáp án D
Chú ý 4 cạnh khác nhau
Có C 6 4 cách chọn 4 màu khác nhau. Từ mỗi bộ 4 màu thì có 4! = 24 cách tô màu khác nhau.
Có C 6 3 cách chọn 3 màu khác nhau. Từ mỗi bộ 3 màu, có 4.3 = 12 cách tô.
Có C 6 2 cách chọn 2 màu khác nhau khi đó có: 2.1 = 2 cách tô.
Tổng cộng: 24 . C 6 4 + 4 . 3 C 6 3 + 2 . C 6 2 = 630 cách.
a. đầu tiên, xếp chỗ cho An và Bình ngồi cạnh nhau, có 2*8=16 cách. Sau đó, xếp 7 bạn vào 7 chỗ còn lại, nên có 7! Cách xếp. vậy có tất cả 16.7! cách xếp 9 bạn để An và Bình ngồi cạnh nhau.
Chọn D
Eo ơi, đừng!! Tách ra đi bạn ơi, để thế này khủng bố mắt người đọc quá :(
Mà hình như mấy bài này có trong tập đề của thầy tui gởi nè :v
- Đếm số cách để A và B ngồi cạnh nhau, C ngồi vị trí bất kì:
Coi A, B là một người, có \(2!\) cách xếp vị trí A, B.
Khi đó ta xếp vị trí của 9 người: \(9!\).
Có tổng số cách xếp là: \(2!.9!\).
- Đếm số cách để A và B ngồi cạnh nhau, C ngồi cạnh A.
Coi A, B, C là một người. Có 2 cách xếp thỏa mãn là CAB, BAC.
Khi đó ta xếp vị trí của \(8\) người: \(8!\).
Có số cách xếp là: \(2.8!\).
Vậy số cách xếp để A và B ngồi cạnh nhau, A và C không ngồi cạnh nhau là \(2!.9!-2.8!\).
Chọn đáp án B
Số cách xếp là 3!.4!=144