K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 7 2020

\(A=\frac{2^2\left(x+y+z\right)\left(x+y\right)}{4xyzt}=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{4xyzt}\)

\(A\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{4xyzt}=\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{4\left(x+y\right)^2z\left(x+y\right)}{xyz}\)

\(A\ge\frac{4\left(x+y\right)^2}{xy}\ge\frac{16xy}{xy}=16\)

\(A_{min}=16\) khi \(\left\{{}\begin{matrix}x+y+z+t=2\\x+y+z=t\\x+y=z\\x=y\end{matrix}\right.\) \(\Rightarrow\left(x;y;z;t\right)=...\)

14 tháng 6 2017

Ta có:

\(4A=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

\(=\frac{4\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{16\left(x+y\right)z\left(x+y\right)}{xyz}\)

\(=\frac{16\left(x+y\right)^2}{xy}\ge\frac{64xy}{xy}=64\)

\(\Rightarrow A\ge16\)

Đấu = xảy ra khi \(t=2z=4x=4y=1\)

15 tháng 6 2017

x;y;z;t >0 áp dụng bất đẳng thức Cô-si cho 2 số dương ta có :

=\(x+y\ge2\sqrt{xy}\)

=\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)

=\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)

nhân các vế tương ứng ta có:

\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

mà x+y+z+t=2

\(\left(x+y\right)\left(x+y+z\right)2\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)

=\(\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)

=\(\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)

\(\Rightarrow B=\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge\frac{16xyzt}{xyzt}=16\)

vậy minB=16 khi\(\hept{\begin{cases}x=y\\x+y=z\\x+y+z=t\end{cases}};x+y+z+t=2\Rightarrow x=y=0.25;z=0.5;t=1\)

https://hoc24.vn/hoi-dap/question/1008948.html?pos=2676645

30 tháng 7 2020

Xét: \(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}\)\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}=x-y\)(1)

Tương tự, ta có: \(\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}-\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}=y-z\)(2); \(\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}-\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}=z-x\)(3)

Cộng theo vế của 3 đẳng thức (1), (2), (3), ta được:

\(\left[\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]\)\(-\left[\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]=0\)

\(\Rightarrow\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Mà \(A=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)nên \(2A=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(\ge\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{\frac{\left(z^2+x^2\right)^2}{2}}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\frac{1}{2}\left(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{z^2+x^2}{z+x}\right)\)\(\ge\frac{1}{2}\left(\frac{\frac{\left(x+y\right)^2}{2}}{x+y}+\frac{\frac{\left(y+z\right)^2}{2}}{y+z}+\frac{\frac{\left(z+x\right)^2}{2}}{z+x}\right)\)\(=\frac{1}{4}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]=\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\)(Do theo giả thiết thì x + y + z = 1)

\(\Rightarrow A\ge\frac{1}{4}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

12 tháng 8 2017

Bài này t làm rồi, "nhẹ" không ấy mà :|

Dự đoán khi \(x=y=z=\frac{1}{3}\Rightarrow A=\frac{1}{4}\). Ta c/m nó là GTNN của A

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=Σ\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\)

Cần chứng minh BĐT \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{x+y+z}{4}\)

\(\Leftrightarrow4\left(x^2+y^2+z^2\right)^2\ge\left(x+y+z\right)Σ\left(2x^3+x^2y+x^2z\right)\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+6x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+4x^2y^2\right)+Σ\left(2x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(x^4-3x^3y+4x^2y^2-3xy^3+y^4\right)+Σ\left(x^2z^2-2z^2xy+y^2z^2\right)\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)^2\left(x^2-xy+y^2\right)+Σz^2\left(x-y\right)^2\ge0\)

BĐT cuối đúng tức ta có \(A_{Min}=\frac{1}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

P/s: Nguồn lời giải Câu hỏi của Vo Trong Duy - Toán lớp 9 - Học toán với OnlineMath, rảnh quá ngồi gõ lại :V

2 tháng 4 2018

Áp dụng BĐT Cauchy, ta có:

4A = (x + y + z + t)2(x + y + z)(x + y)/xyzt

>= 4(x + y + z)t(x + y + z)(x + y)/xyzt

>= 4(x + y + z)2(x + y)/xyz >= 4 . 4(x + y)z(x + y)/xyz

>= 16(x + y)2/xy >= 16 . 4xy/xy >= 64

=> A >= 16

28 tháng 11 2016

Ta có

\(\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y+z}{12}+\frac{y+2z}{18}\ge\frac{3x}{6}=\frac{x}{2}\)

\(\Leftrightarrow\frac{x^3}{\left(y+z\right)\left(y+2z\right)}\ge-\frac{y+z}{12}-\frac{y+2z}{18}+\frac{x}{2}=\frac{18x-7z-5y}{36}\)

Tương tự ta có

\(\frac{y^3}{\left(z+x\right)\left(z+2x\right)}\ge\frac{18y-7x-5z}{36}\)

\(\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\ge\frac{18z-7y-5x}{36}\)

Cộng vế theo vế ta được

\(A\ge\frac{18x-7z-5y}{36}+\frac{18y-7x-5z}{36}+\frac{18z-7y-5x}{36}\)

\(=\frac{x+y+z}{6}\ge\frac{3\sqrt[3]{xyz}}{6}=\frac{3.2}{6}=1\)

Dấu = xảy ra khi x = y = z = 2

28 tháng 11 2016

=720vix+y3=56vayx=720

26 tháng 7 2019

Ta có:

4 A = ( x + y + z + t ) 2 ( x + y + z ) ( x + y ) x y z t ≥ 4 ( x + y + z ) t ( x + y + z ) ( x + y ) x y z t = 4 ( x + y + z ) 2 ( x + y ) x y z ≥ 4.4 ( x + y ) z ( x + y ) x y z = 16 ( x + y ) 2 x y ≥ 16.4 x y x y ≥ 64 ⇒ A ≥ 16

Đẳng thức xảy ra khi và chỉ khi  x + y + z + t = 2 x + y + z = t x + y = z x = y ⇔ x = y = 1 4 z = 1 2 t = 1

4 tháng 1 2020

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=3\). Tìm Min:\(P=\Sigma_{cyc}\frac{a^3}{\left(b+2c\right)}\)

Auto làm nốt:3