Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)
=(a+b)(a2−ab+b2)+3ab[(a+b)2−2ab]+6a2b2(a+b)
=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)
=(a+b)[(a+b)2−3ab]+3ab[(a+b)2−2ab]+6a2b2(a+b)
Thay a + b = 1 vào biểu thức trên ,có :
1.(12−3ab)+3ab(12−2ab)+6a2b2.11.(12−3ab)+3ab(12−2ab)+6a2b2.1
=1−3ab+3ab−6a2b2+6a2b2=1=1−3ab+3ab−6a2b2+6a2b2
=1
Vậy biểu thức M có giá trị bằng 1 khi a + b = 1
Ta có: a + b = 1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2
= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2
= 1
nhwos tick nha :D
M=(a+b)(a2-ab+b2)+3ab(1-2ab)+6a2b2
M=a2-ab+b2+3ab
M=(a+b)2=1
Ta có: a + b = 1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2
= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2
= 1
\(a,a^2-2a-4b^2-4b\)
\(=\left(a^2-4b^2\right)-\left(2a+4b\right)\)
\(=\left(a-2b\right)\left(a+2b\right)-2\left(a+2b\right)\)
\(=\left(a+2b\right)\left(a-2b-2\right)\)
\(b,x^3-2x^2+4x-8\)
\(=x^2\left(x-2\right)+4\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+4\right)\)
\(c,x^3+36x-12x^2\)
\(=x^3-6x^2-6x^2+36x\)
\(=x^2\left(x-6\right)-6x\left(x-6\right)\)
\(=\left(x-6\right)\left(x^2-6x\right)\)
\(=x\left(x-6\right)^2\)
\(d,5a^2+3\left(a+b\right)^2-5b^2\)
\(=\left(5a^2-5b^2\right)+3\left(a+b\right)^2\)
\(=5\left(a^2-b^2\right)+3\left(a+b\right)^2\)
\(=5\left(a-b\right)\left(a+b\right)+3\left(a+b\right)^2\)
\(=\left(a+b\right)\left[5\left(a-b\right)+3\left(a+b\right)\right]\)
\(=\left(a+b\right)\left(5a-5b+3a+3b\right)\)
\(=\left(a+b\right)\left(8a-2b\right)\)
\(=2\left(a+b\right)\left(4a-b\right)\)
\(e,x^3-3x^2+3x-1-y^3\)
\(=\left(x^3-3x^2+3x-1\right)-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)
\(=\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)
\(=\left(x-y-1\right)\left(x^2+y^2-xy-y+1\right)\)
#Urushi☕
\(c.\\ x^3+36x-12x^2\\ =x\left(x^2-12x+36\right)\\ =x.\left(x^2-2.x.6+6^2\right)\\ =x.\left(x-6\right)^2\\ ---\\ d.\\ 5a^2+3\left(a+b\right)^2-5b^2\\ =\left(5a^2-5b^2\right)+3\left(a+b\right)^2\\ =5.\left(a^2-b^2\right)+3.\left(a+b\right)\left(a+b\right)\\ =5\left(a+b\right)\left(a-b\right)+3\left(a+b\right)\left(a+b\right)\\ =\left(a+b\right)\left(5a-5b+3a+3b\right)\\ =\left(a+b\right)\left(8a-2b\right)\\ =2\left(a+b\right)\left(4a-b\right)\)
\(e.\\ x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3\\ =\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right).y+y^2\right]\\ =\left(x-y-1\right).\left[\left(x^2-2x+1\right)+y\left(x+y-1\right)\right]\)
a) Gợi ý: a 2 − 5 a + 4 = ( a − 1 ) ( a − 4 ) ; a 2 + 3 a − 4 = ( a − 1 ) ( a + 4 )
Ta rút gọn được A = a + 1 a − 4
b) Thay a = 5 vào biểu thức A tìm được A = 6
c) Ta biến đổi A = a + 1 a − 4 = 1 + 5 a − 4
⇒ A ∈ ℤ ⇒ a ∈ − 1 ; 3 ; 5 ; 9
\(N=a^3+b^3+3ab\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)
=1
\(M=\left(a^2+b^2+2-a^2-b^2+2\right)\left[\left(a^2+b^2+2\right)^2+\left(a^2+b^2+2\right)\left(a^2+b^2-2\right)+\left(a^2+b^2-2\right)^2\right]-12\left(a^2+b^2\right)^2\\ M=4\left(a^4+b^4+4+4a^2+4b^2+2a^2b^2+\left(a^2+b^2\right)^2-4+a^4+b^4+4-4a^2-4b^2+2a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2\right)-12\left(a^4+2a^2b^2+b^4\right)\\ M=4\left(3a^4+3b^4+4+6a^2b^2-3a^4-6a^2b^2-3b^4\right)\\ M=4\cdot4=164\)
a) M có nghĩa khi a 3 - 4 a ≠ 0 ⇔ a ≠ { 0 ; ± 2 }
b) Rút gọn thu được: M = a ( a 2 + 4 a + 4 ) a ( a 2 − 4 ) = a + 2 a − 2
c) M = − 3 ⇔ a + 2 a − 2 = − 3 ⇔ a = 1 (TMĐK)
a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.
b) N = 8 a 3 - 27 b 3 = ( 2 a ) 3 - ( 3 b ) 3 = ( 2 a - 3 b ) 3 + 3.2a.3b.(2a - 3b)
Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.
c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.
Thực hiện rút gọn K, ta có kết quả K = 1.
Cách 2: Tìm cách đưa biêu thức về dạng a + b.
a 3 + b 3 = ( a + b ) 3 – 3ab(a + b) = 1 - 3ab;
6 a 2 b 2 (a + b) = 6 a 2 b 2 kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2 + 2ab + b 2 ) = 3ab.
Thực hiện rút gọn K = 1.