Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi H là một điểm bất kỳ trên tia Ot
Xét ΔOAB có OA=OB
nên ΔOAB cân tại O
mà OH là tia phân giác ứng với cạnh AB
nên Ot là đường cao ứng với cạnh AB
a) xet tam giac OAH va tam giac OBH : OH=OH ( canh chung ), OA=OB (gt), goc HOA= goc HOB( Ot la tia p/g goc xOy)-> tam giac = nhau (c-g-c)
b) cm tam giac OHB= tam giac AHC (c=g=c) ; OH=HC , BH=AH (tam giac OAH=tam giac OBH), goc OHB= goc CHA( 2 goc doi dinh)
c) C1 : cm tam giac OAB can tai O co OH la phan giac -> OH la duong cao -> OH vuong goc AB hay OC vuong goc AB
C2 : ta co : goc OHB+ goc OHA=180 ( 2 goc ke bu)
goc OHB= goc OHA( tam giac OHA= tam giac OHB )
--> goc OHB+goc OHB=180
-> 2 gpc OHB=180
->goc OHB=180:2=90
-> OH vuong goc AH tai H hay OC vuong goc AB
a) xét tam giác OAI vaf tam giác OBI CÓ
OA=OB (GT)
AOI = IOB (Ot là phân giác của góc xOy)
OI là cạn chung
Do đó tam giác OAI = tam giác OBI (c,g,c)
suy ra AI= BI ( Hai cạnh tương ứng)
AIO = OIB (hai góc tương ứng)
+ VÌ AI = BI nên I là trung điểm của AB
+ có AIO = OIB mặt khác AIO + OIB= 180 (HAI GÓC KỀ BÙ)
Nên suy ra AIO = OIB = 180/2 = 90
Suy ra OI vuông góc với AB
b) ý b cậu tự làm nhé vì nó dài lắm mình viêt MỎI TAY
GỢI Ý chứng minh cho hai tam giac bằng nhau theo trường hợp g.c.g rồi sau đó suy ra AH = BK
a) Xét ΔOAC;ΔOBCΔOAC;ΔOBC có :
OA=OB(gt)OA=OB(gt)
ˆAOC=ˆBOCAOC^=BOC^ (Ot là tia phân giác của ˆxOyxOy^ )
OC:chungOC:chung
=> ΔOAC=ΔOBC(c.g.c)ΔOAC=ΔOBC(c.g.c)
=> AC=BCAC=BC (2 cạnh tương ứng)
Xét ΔCABΔCAB có :
AC=BC(cmt)AC=BC(cmt)
=> ΔCABΔCAB cân tại C (đpcm)
b) Xét ΔOABΔOAB có :
OA=OB(gt)OA=OB(gt)
=> ΔOABΔOAB cân tại O
Mà có : ODOD là tia phân giác của ˆAOBAOB^ (gt)
=> OD đồng thời là đường trung trực trong ΔOABΔOAB
=> OD⊥ABOD⊥AB
Do đó : ˆADO=90o