K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TV
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TV
0
NH
0
LD
0
HA
1
NV
Nguyễn Việt Lâm
Giáo viên
1 tháng 3 2023
Ta có:
\(\dfrac{a^2-ab+b^2}{a^2+ab+b^2}=\dfrac{\dfrac{1}{3}\left(a^2+ab+b^2\right)+\dfrac{2}{3}\left(a-b\right)^2}{a^2+ab+b^2}\)
\(=\dfrac{1}{3}+\dfrac{2\left(a-b\right)^2}{3\left(a^2+ab+b^2\right)}\ge\dfrac{1}{3}\)
Dấu = xảy ra khi \(a=b\)
LD
0
GN
GV Nguyễn Trần Thành Đạt
Giáo viên
22 tháng 7 2023
Bài 1:
\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)
22 tháng 7 2023
2:
a: =-(x^2-3x+1)
=-(x^2-3x+9/4-5/4)
=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn
b: =-2(x^2+3/2x+3/2)
=-2(x^2+2*x*3/4+9/16+15/16)
=-2(x+3/4)^2-15/8<0 với mọi x
a)Ta có a>0,b>0,a<b
Nhân cả 2 vế của a<b với a
=> a^2<ab ( vì a>0)
Nhân cả 2 vế của a<b với b
=> ab<b^2 ( vì b>0)
b)có a,b>0 , a<b
Bình phương a<b
=> a^2<b^2
a,b>0, a<b
=> a^3<b^3