K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

Ta có: a > 0, b > 0⇒ a.b > 0.b⇒ ab > 0⇒ 1/ab > 0

a > b⇒ a. 1/ab > b. 1/ab⇒ 1/b > 1/a⇒ 1/a < 1/b

28 tháng 5 2018

a) Chú ý m > 2 thì m > 0.

b) Chú ý a < 0 và b < 0 thì ab > 0. Khi đó a > b, nhân hai vế với 1 ab > 0  ta thu được  1 b > 1 a . Tương tự a > 0, b > 0, a > b ta được  1 a < 1 b .

27 tháng 4 2018

Ta có: a - b 2   ≥ 0

      ⇔ a 2  + b 2  – 2ab  ≥  0

      ⇔  a 2 +  b 2 – 2ab + 2ab  ≥  2ab

      ⇔  a 2  +  b 2   ≥  2ab

Vì a  ≥  0, b  ≥  0 nên ab  ≥  0 ⇒ 1/ab ≥ 0

       ( a 2  +  b 2 ).1/ab  ≥  2ab.1/ab

       ⇔ a/b + b/a  ≥  2

       ⇔ 2 + a/b + b/a  ≥ 2 + 2

       ⇔ 2 + a/b + b/a  ≥  4

       ⇔ 1 + 1 + a/b + b/a  ≥  4

      ⇔ a/a + b/b + a/b + b/a  ≥  4

      ⇔ a(1/a + 1/b ) + b(1/a + 1/b )  ≥  4

      ⇔ (a + b)(1/a + 1/b )  ≥  4

7 tháng 7 2018

Thực hiện phép tính đối với vế trái của mỗi đẳng thức.

12 tháng 6 2019

4 tháng 8 2019

Vậy bất đẳng thức được chứng minh.

21 tháng 4 2018

Sửa đề: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{a}{c}}-\sqrt{\frac{c}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{b}}\right)^2\ge0\)

Cái này đúng vậy ta có điều phải chứng minh

28 tháng 10 2018

Từ (1) và (2) suy ra:   a 2 <  b 2

Ta có: a < b ⇒  a 3  <  a 2 b (3)

a < b ⇒ a b 2 <  b 3 (4)

a < b ⇒ a.a.b < a.b.b ⇒ a 2 b < a b 2  (5)

Từ (3), (4) và (5) ⇒  a 3  <  b 3

19 tháng 12 2019

Với a > 0, b > 0 ta có:

a < b ⇒ a.a < a.b ⇒  a 2  < ab (1)

a < b ⇒ a.b < b.b ⇒ ab <  b 2  (2)