Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
Ta có : A=22+24+26+...+220
=(22+24)+(26+28)+...+(218+220)
=22(1+22)+26(1+22)+...+218(1+22)
=22.5+26.5+...+218.5 chia hết cho 5
Vậy A chia hết cho 5.
\(A=2^2+2^4+2^6..+2^{18}+2^{20}\)
\(\Leftrightarrow A=\left(2^2+2^4\right)+\left(2^6+2^8\right)+...+\left(2^{18}+2^{20}\right)\)
\(\Leftrightarrow A=20+2^4.\left(2^2+2^4\right)+...+2^{16}.\left(2^2+2^4\right)\)
\(\Leftrightarrow A=20+2^4.20+..+2^{16}.20\)
\(\Leftrightarrow A=20\left(1+2^4+..+2^{16}\right)\)
Vì \(20⋮5\)
\(\Rightarrow A=20\left(1+2^4+..+2^{16}\right)⋮5\)
Vậy \(A⋮5\)
hok tốt!!
\(A=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\\ A=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(1+...+3^{99}\right)=13\left(1+...+3^{99}\right)⋮13\)
a. A= 2+22+23+......+260
= 2+ (22+23)+(24+25)+......+(258+259)+260
=2+2(2+22)+23(2+22)+......+257(2+22)+260
=2+(2+22)(2+23......+257)+260
=2+ 6(2+2^3+......+2^57)+260 => cả 23 số hạng đều chia hết cho 2 => tổng chia hết cho 2 => a chia hết cho 2
b. A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+.........+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+......+2^57(1+2+2^2+2^3)
=2.15 +2^5.15+...........+2^57.15 = 15 (2+2^5+...........+2^57) => 15 chia hết cho 3 => A chia hết cho 3
k đúng cho mình nha!!!!
a. Do 2; 22; 23; ...; 260 chia hết cho 2
=> A chia hết cho 2 ( đpcm)
b. A = 2 + 22 + 23 + ... + 260 ( có 60 số; 60 chia hết cho 2)
A = (2 + 22) + (23 + 24) + ... + (259 + 260)
A = 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
A = 2.3 + 23.3 + ... + 259.3
A = 3.(2 + 23 + ... + 259) chia hết cho 3
=> A chia hết cho 3 ( đpcm)
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$
$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$
$\Rightarrow 5a-a=5^{2024}-1$
$\Rightarrow 4a=5^{2024}-1$
$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)
A=1+2+22+...+22009 gồm 2010 số
A=(1+2+22)+(23+24+25)+...+(22007+22008+22009)
A=7.1+7.23+...+7.22007(. là dấu nhân nhaaa)
A=7.(1+23+...+22007)⋮7
Vậy A⋮7
tích đúng hộ mikkkkk