Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+...+3^{2007}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2008}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2008}\right)-\left(1+3+3^2+...+3^{2007}\right)\)
\(\Rightarrow2A=3+3^2+3^3+...+3^{2008}-1-3-3^2-...-3^{2007}\)
\(\Rightarrow2A=3^{2008}-1\)
\(\Rightarrow2A+1=3^{2008}\)
\(A=1+3+3^2+...+3^{2007}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2008}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{2008}\right)-\left(1+3+3^2+...+3^{2007}\right)\)
\(\Rightarrow2A=3+3^2+3^3+...+3^{2008}-1-3-3^2-...-3^{2007}\)
\(\Rightarrow2A=3^{2008}-1\)
\(\Rightarrow2A+1=3^{2008}\)
Nhớ k cho mk nha!!!
a) \(4^3\cdot32^4\)
\(=\left(2^2\right)^3\cdot\left(2^5\right)^4\)
\(=2^6\cdot2^{20}\)
\(=2^{26}\)
b) \(3^{20}\cdot9^{10}\cdot27^2\)
\(=3^{20}\cdot\left(3^2\right)^{10}\cdot\left(3^3\right)^2\)
\(=3^{20}\cdot3^{20}\cdot3^6\)
\(=3^{46}\)
c) \(3^{10}\cdot7^{10}\)
\(=\left(3\cdot7\right)^{10}\)
\(=21^{10}\)
d) \(6^{15}:6^{14}\)
\(=6^{15-14}\)
\(=6\)
e) \(28^3:7^3\)
\(=4^3\cdot7^3:7^3\)
\(=4^3\)
\(=2^6\)
a: \(4^5\cdot8^7=2^{10}\cdot2^{21}=2^{31}\)
b: \(125^5\cdot25^3=5^{15}\cdot5^6=5^{21}\)
3A=\(3+3^2+3^3+...+3^{11}\)
3A-A=(\(3+3^2+3^3+...+3^{11}\))-(\(1+3+3^2+...+3^{10}\))
2A=\(3^{11}-1\)
2A+1=\(3^{11}\)
a, 273 : 35 = ( 33)3 : 35 = 39 : 35 = 34
b, 72 . 343 . 4930 = 72. 73.(72)3 = 711
c, 625 : 53 = 54 : 53 = 5
d, 1 000 000 : 103 = 106 . 103 = 103
e, 115 : 121= 115 : 112 = 113
f, 87 : 64 :8 = 87 : 82 : 81 = 84
i, 1024 . 16 : 26 = 210 . 23 : 26 = 27
\(A=1+3+3^2+...+3^{41}\)
\(3A=3+3^2+3^3+...+3^{42}\)
\(3A-A=3+3^2+...+3^{42}-1-3-...-3^{41}\)
\(2A=3^{42}-1\)
\(A=\dfrac{3^{42}-1}{2}\)
Ta có: \(2A+1\)
\(=2\cdot\dfrac{3^{42}-1}{2}+1\)
\(=3^{42}-1+1\)
\(=3^{42}\)
\(=\left(3^2\right)^{21}\)
\(=9^{21}\)
Ta có: \(A=2+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=2^{101}-2\)
Hay \(A=2^{101}-2\)
Vậy \(A=2^{101}-2\)
_Học tốt_
3A=3+32+33+....+32008
2A=(3+32+....+32008)-(1+3+...+32007)=32008-1