Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
a) A=2018!.(2019 - 1 -2018)
=2018!.0
= 0
vậy A= 0
b)\(B=\left(1-\frac{1}{9}+1-\frac{2}{10}+1+\frac{3}{11}+...+1-\frac{150}{158}\right):\left(\frac{1}{4}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{158}\right)\right)\)
\(=\left(\frac{8}{9}+\frac{8}{10}+...+\frac{8}{158}\right):\left(\frac{1}{4}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{158}\right)\right)\)
\(=8.\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{158}\right):\left(\frac{1}{4}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{158}\right)\right)\)
\(=8:\frac{1}{4}\)
=32
Vậy B= 32
A=1/2+1/3+..+1/2019 < 1>
A= 1+1/2+1/3+..+1/2019 < 1>
A=1+1/2+1/3+..+1/2019 <1>
A=1+1/2+1/3+..+1/2019 <2018>
Vì 2018/2019 <1>
nên A=1/2+1/3+..+1/2019<1>
=> A=1/2+1/3+..+1/2019 không phải là số tự nhiên.
Mình chưa hiểu cách bạn làm với dấu <1> cho lắm.
Theo mình hiểu thì bạn đang chứng minh $A< 1$ nên $A$ không phải số tự nhiên. Mà điều này thì sai vì $A=1+(\frac{1}{2}+\frac{1}{3}+...)$ hiển nhiên lớn hơn $1$.
Để A nguyên mà 32018 + 1 > 5 thì phải cm 32018 + 1\(⋮\)5
Bài giải
Ta có: A = \(\frac{3^{2018}+1}{5}\)
Xét chữ số tận cùng của 32018:
Ta có:
32018 = 34.504 + 2 = 34.504.32 = (...1).32 = (...1).9 = (...9)
Xét 32018 + 1:
32018 + 1 = (...9) + 1 = (...0)
Vì 32018 + 1 có chữ số tận cùng là 0
Nên 32018 + 1 \(⋮\)5
Suy ra A thuộc Z
=> Đpcm
Dễ thấy A > 1
Ta có:
\(A=\frac{1}{1^2}+\frac{1}{2^3}+...+\frac{1}{2018^{2019}}\)
\(< \frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2018^2}< 1+\frac{1}{1\cdot2}+...+\frac{1}{2017\cdot2018}\)
\(=1+1-\frac{1}{2}+...+\frac{1}{2018}=2-\frac{1}{2018}< 2\)
Vì \(1< A< 2\) nên A không nguyên
sai nha