Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=n(n+1)+1
Vì n(n+1) chia hết cho 2
nên A=n(n+1)+1 không chia hết cho 2
Xét tổng : a + 4b + 4a + b = 5a + 5b = 5 ( a + b ) chia hết cho 5
Mặt khác ta có a + 4b chia hết cho 5 nên hiển nhiên 4a + b chia hết cho 5
=> đpcm
Có : \(\hept{\begin{cases}a,b\in N\\5⋮5\end{cases}}\Rightarrow5a,5b⋮5\)
=> ( 5a + 5b ) \(⋮\)5 => ( 4a + a + 4b + b ) \(⋮\)5 => ( a + 4b ) + ( 4a+b ) \(⋮\)5
*Nếu ( a + 4b ) \(⋮\)5
( a + 4b ) + ( 4a+b ) \(⋮\)5 => ( 4a + b ) \(⋮\)5
*Nếu ( 4a + b ) \(⋮\)5
( a + 4b ) + ( 4a+b ) \(⋮\)5 => ( a + 4b) \(⋮\)5
Vậy ( a + 4b ) \(⋮\)5 <=> (4a + b ) \(⋮\)5
Ta có : A = 2 + 22 + 23 + 24 + .. + 259 + 260
= (2 + 22) + (23 + 24) + .. + (259 + 260)
= 2(2 + 1) + 23(2 + 1) + ... + 259(2 + 1)
= (2 + 1)(2 + 23 + ... + 259) = 3(2 + 23 + ... + 259) \(⋮\)3
105+35=100000+35=100035
Vì tổng các chữ số của 105+35 là: 1+0+0+0+3+5=9 chia hết cho 9 nên 105+35 chia hết cho 9 (1)
Vì 105+35 có tận cùng là 5 nên 105+35 chia hết cho 5 (2)
Từ (1) và (2) ta có điều phải chứng minh
b, 105+98=100000+98=100098
Vì 105+98 có tận cùng là 8 nên 105+98 chia hết cho 2 (1)
Vì tổng các chữ số của 105+98 là: 1+0+0+0+9+8=18 chia hết cho 9 nên 105+98 chia hết cho 9 (2)
Từ (1) và (2) ta có điều phải chứng minh
a) 105 + 35 = 100000 + 35 = 100035 chia hết cho 9 và 5.
b) 105 + 98 = 100000 + 98 = 100098 chia hết cho 2 và 9.
a+5b=a-b +6b vì 6b chia hết cho 6 nên a+5b chia hết cho 6
Các phần còn lại làm tương tự
a+17b=1-b +18b.....
ta có dãy này gồm 10 số hạng
mà 11 lũy thừa mấy cũng chỉ có chữ số tận cùng 1
mà mười số nên
khi cộng lại ta có chữ số cuối cùng là 0
mà 0 chia hết cho 5
nên A chia hết cho 5
k cho mình nhé