Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
ta co' tinh chat cua luy thua cua 11 nhu sau:
So cuoi cung cua 11^x luon = 1.
Tu` do' ta de dang thay':A= 11^9+11^8+...+11+1 cac so hang deu co so tan cung = 1 va co 10 so hang do do' so' tan cung cua tong?
nay` la` 0. Vay A chia het cho 5.
Ta có:
A = (119 + 118 + 117 + 116 + 115) + (114 +113 + 112 + 11 + 1)
A = Chia hết cho 5 + Chia hết cho 5
=> A chia hết cho 5
A = 119 + 118 + ... + 11 + 1
A = 119 + 118 + ... + 111 + 110
Dễ thấy: A là tổng của của 10 số hạng, mỗi số hạng là lũy thừa của 11 nên đều có tận cùng là 1
=> A có tận cùng là 0, chia hết cho 5 (đpcm)
=>11A=11^10 + 11^9 +... +11^2+11
=>10A=11^10-1
=>A=(11^10-1) :10
Ta thấy 11^10 tận cùng =1
=>1-1=0=>0 chia hết cho 5
\(A=1+11+...+11^9\)
\(11A=11+11^2+...+11^{10}\)
\(11A-A=\left(11+11^2+...+11^{10}\right)-\left(1+11+...+11^9\right)\)
\(10A=11^{10}-1\)
Ta có lũy thừa của 11 luôn có dạng ...1
=> 1110 - 1 có dạng ...0 chia hết cho 5 ( đpcm )
\(11A=11.\left(11^9+11^8+11^7+...+11+1\right)\)
\(11A-A=11^{10}+11^9+11^8+...+11^2+11\)
\(10A=\left(11^{10}+11^9+11^8+...+11^2+11\right)-\left(11^9+11^8+11^7+...+11+1\right)\)
\(10A=11^{10}-1\)
\(A=\frac{11^{10}-1}{10}\)
11^10 có CSTC là 1=>11^10-1 có CSTC là 0
\(=>\frac{11^{10}-1}{5}⋮5=>A⋮5\)
bạn vô đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
ai kết bạn đi