Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+7^4+...+7^{118}\right)⋮57\)
\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{118}\right)⋮57\)
220 đồng dư với 2(mod 2)
=>\(220^{119^{69}}\)đồng dư với 0(mod 2)
119 đồng dư với 1(mod 2)
=>\(119^{69^{220}}\)đồng dư với 1(mod 2)
69 đồng dư với 1(mod 2)
=>\(69^{220^{119}}\)đồng dư với 1(mod 2)
=>\(220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 2
220 đồng dư với 1(mod 3)
=>\(220^{119^{69}}\)đồng dư với 1(mod 3)
119 đồng dư với -1(mod 3)
=>\(119^{69^{220}}\)đồng dư với -1(mod 3)
69 đồng dư với 0(mod 3)
=>\(69^{220^{119}}\)đồng dư với 0(mod 3)
=>\(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 3
220 đồng dư với -1(mod 17)
=>\(220^{119^{69}}\)đồng dư với -1(mod 17)
119 đồng dư với 0(mod 17)
=>\(119^{69^{220}}\)đồng dư với 0(mod 17)
69 đồng dư với 1(mod 17)
=>\(69^{220^{119}}\)đồng dư với 1(mod 17)
=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 17
vì (2;3;17)=1=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 102
=>đpcm
102
Toán lớp 7Lũy thừaChia hết và chia có dư
Trần Thị Loan Quản lý 15/08/2015 lúc 22:15
102 = 2.3.17
+) Chứng minh A chia hết cho 2
$220^{119^{69}}=\left(....0\right)$22011969=(....0)
$69^{220}$69220 lẻ => $119^{69^{220}}=\left(....9\right)$11969220=(....9)
220119 tận cùng là 0 => kết qỉa là số chẵn => $69^{220^{119}}=\left(....1\right)$69220119=(....1)
=> A có tận cùng là chữ số 0 => A chia hết cho 2 (1)
+) A chia hết cho 3
220 đồng dư với 1 (mod 3) => $220^{119^{69}}$22011969 đồng dư với 1 mod 3
119 đồng dư với -1 mod 3 => $119^{69^{220}}$11969220 đồng dư với $\left(-1\right)^{69^{220}}=-1$(−1)69220=−1 (mod 3)
69 chia hết cho 3 nên $69^{220^{119}}$69220119 chia hết cho 3 hay $69^{220^{119}}$69220119 đồng dư với 0 (mod 3)
=> A đồng dư với 1 +(-1) + 0 = 0 (mod 3) =>A chia hết cho 3 (2)
+) A chia hết cho 17
220 đồng dư với (-1) mod 3 => $220^{119^{69}}$22011969 đồng dư với $\left(-1\right)^{119^{69}}=-1$
A có (9-0) + 1 = 10 số hạng.
Mỗi số hạng 11n đều có tận cùng là 1. Nên A có tận cùng là 10*1 là 0 => A chia hết cho 5. đpcm