Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TỪ ĐỀ BÀI => 5A=1+1/5+1/5^2+......+1/5^2013
CÓ 4A=5A-A
=>4A=(1+1/5+1/5^2+.....+1/5^2013)-(1/5+1/5^2+1/5^3+....+1/5^2014)
=>4A= 1- 1/5^2014
=>A= (1-1/5^2014)/4 ;CÓ 1-1/5^2014 <1
=>A<1/4
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
vậy 1/5.2 + 34/3456.23 =vgy0 nên ta có :
1/2.5 + B = 1/16 - B = 32156.097 : 35.98 + -9 -76 , suy ra
B= >89 _980 - -50 + 678 x 54=143.098-2014/5.2015
vậy B=78
Chua hoc
Hk tot,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhe Nguyen Chau Tuan Kiet
\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)
ta có 1/3^2 =1/3x3<1/2x3
1/4^2=1/4x4<1/3x4
..............................
1/21^2=1/21x21<1/20x21
suy ra ( 1/3^2+1/4^2+1/5^2+....+1/21^2)<(1/2x3+1/3x4+1/4x5+....+1/20x21)
(1/3^2+1/4^2+1/5^2+......+1/21^2)<(1/2-1/3+1/3-1/4+1/4-1/5+.......+1/20-1/21)
(1/3^2+1/4^2+1/5^2+.......+1/21^2)<(1/2-1/21)
(1/3^2+1/4^2+1/5^2+.......+1/21^2)<19/42
ta có 1/2=21/42
suy ra (1/3^2+1/4^2+1/5^2+....+1/21^2)<19/42<21/42
(1/3^2+1/4^2+1/5^2+.....+1/21^2)<19/42<1/2
suy ra ( 1/3^2+1/4^2+1/5^2+....+1/21^2)<1/2
Vậy A<1/2
\(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{21^2}=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+...+\frac{1}{21.21}\)
\(< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)
\(=\frac{1}{2}-\frac{1}{21}< \frac{1}{2}\)
=> \(A< \frac{1}{2}\left(\text{ĐPCM}\right)\)
\(A=\frac{1}{5}+\frac{1}{5^2}+........+\frac{1}{5^{2014}}\)
\(\Rightarrow5A=1+\frac{1}{5}+...........+\frac{1}{5^{2013}}\)
\(\Rightarrow5A-A=1+...........+\frac{1}{5^{2013}}-\frac{1}{5}+...........+\frac{1}{5^{2014}}\)
\(\Rightarrow4A=1-\frac{1}{5^{2014}}\)
\(\Rightarrow4A< 1\Rightarrow A< \frac{1}{4}\)
=> 5A = 1 + 1/5 +...+1/5^2013
=>4A= 1- 1/5^2014
=> 4A< 1 => A < 1/4