K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

\(A=\frac{1}{5}+\frac{1}{5^2}+........+\frac{1}{5^{2014}}\)

\(\Rightarrow5A=1+\frac{1}{5}+...........+\frac{1}{5^{2013}}\)

\(\Rightarrow5A-A=1+...........+\frac{1}{5^{2013}}-\frac{1}{5}+...........+\frac{1}{5^{2014}}\)

\(\Rightarrow4A=1-\frac{1}{5^{2014}}\)

\(\Rightarrow4A< 1\Rightarrow A< \frac{1}{4}\)

21 tháng 2 2017

=> 5A = 1 + 1/5 +...+1/5^2013

=>4A= 1- 1/5^2014

=> 4A< 1 => A < 1/4

10 tháng 2 2019

TỪ ĐỀ BÀI => 5A=1+1/5+1/5^2+......+1/5^2013

                      CÓ 4A=5A-A

                    =>4A=(1+1/5+1/5^2+.....+1/5^2013)-(1/5+1/5^2+1/5^3+....+1/5^2014)

                   =>4A= 1- 1/5^2014

                   =>A= (1-1/5^2014)/4  ;CÓ 1-1/5^2014 <1

                    =>A<1/4

10 tháng 2 2019

\(\text{Giải}\)

\(\text{5A=1+1/5+1/5^2+......+1/5^2013}\)

\(\Rightarrow5A-A=4A=1-\frac{1}{5^{2014}}< 1\Rightarrow A< \frac{1}{4}\left(\text{đpcm}\right)\)

20 tháng 6 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)

\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)

\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)

21 tháng 10 2023

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

21 tháng 12 2018

vậy 1/5.2 + 34/3456.23 =vgy0 nên ta có :

1/2.5 + B = 1/16 - B = 32156.097 : 35.98 + -9 -76 , suy ra  

B= >89 _980 -  -50 + 678 x 54=143.098-2014/5.2015

vậy B=78

Chua hoc

Hk tot,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhe Nguyen Chau Tuan Kiet

16 tháng 11 2021

\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)

16 tháng 11 2021

Giúp mình cả bài 4,5 ở dưới được ko?

11 tháng 5 2021

ta có 1/3^2 =1/3x3<1/2x3

          1/4^2=1/4x4<1/3x4

           ..............................

           1/21^2=1/21x21<1/20x21

suy ra ( 1/3^2+1/4^2+1/5^2+....+1/21^2)<(1/2x3+1/3x4+1/4x5+....+1/20x21)

            (1/3^2+1/4^2+1/5^2+......+1/21^2)<(1/2-1/3+1/3-1/4+1/4-1/5+.......+1/20-1/21)

             (1/3^2+1/4^2+1/5^2+.......+1/21^2)<(1/2-1/21)

              (1/3^2+1/4^2+1/5^2+.......+1/21^2)<19/42

 ta có 1/2=21/42

suy ra (1/3^2+1/4^2+1/5^2+....+1/21^2)<19/42<21/42

           (1/3^2+1/4^2+1/5^2+.....+1/21^2)<19/42<1/2

 suy ra ( 1/3^2+1/4^2+1/5^2+....+1/21^2)<1/2

            Vậy A<1/2

11 tháng 5 2021

\(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{21^2}=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+...+\frac{1}{21.21}\)

\(< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{20.21}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{20}-\frac{1}{21}\)

\(=\frac{1}{2}-\frac{1}{21}< \frac{1}{2}\)

=> \(A< \frac{1}{2}\left(\text{ĐPCM}\right)\)