Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(5^{2008}+5^{2007}+5^{2006}\)
\(=5^{2006}\left(5^2+5+1\right)=5^{2006}\cdot31⋮31\)
b: \(8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
ai lam guip toi cau nay voi mai toi nop bai roi
so sanh 2 phan so sau bang cach nahnh nhat: 2007/2008 voi 2008/2009
a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)
Ta có: 55 chia hết cho 11
Nên \(7^4.55\)chia hết cho 11
Hay \(7^6+7^5-7^4\)chia hết cho 11
Câu b,c làm tương tự
A = \(\dfrac{2}{5.7}\) + \(\dfrac{5}{7.12}\) + \(\dfrac{7}{12.19}\) + \(\dfrac{9}{19.28}\) + \(\dfrac{11}{28.39}\) + \(\dfrac{1}{30.40}\)
A = \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{19}\) + \(\dfrac{1}{19}\) - \(\dfrac{1}{28}\) + \(\dfrac{1}{28}\) - \(\dfrac{1}{39}\) + \(\dfrac{1}{1200}\)
A = \(\dfrac{1}{5}\) - \(\dfrac{1}{39}\) + \(\dfrac{1}{1200}\)
A = \(\dfrac{34}{195}\) + \(\dfrac{1}{1200}\)
B = \(\dfrac{1}{20}\) + \(\dfrac{1}{44}\) + \(\dfrac{1}{77}\) + \(\dfrac{1}{119}\) + \(\dfrac{1}{170}\)
B = 2 \(\times\) ( \(\dfrac{1}{2.20}\) + \(\dfrac{1}{2.44}\) + \(\dfrac{1}{2.77}\) + \(\dfrac{1}{2.119}\) + \(\dfrac{1}{2.170}\))
B = 2 \(\times\) ( \(\dfrac{1}{40}\) + \(\dfrac{1}{88}\) + \(\dfrac{1}{154}\) + \(\dfrac{1}{238}\) + \(\dfrac{1}{340}\))
B = 2 \(\times\) ( \(\dfrac{1}{5.8}\) + \(\dfrac{1}{8.11}\) + \(\dfrac{1}{11.14}\) + \(\dfrac{1}{14.17}\) + \(\dfrac{1}{17.20}\))
B = \(\dfrac{2}{3}\) \(\times\) ( \(\dfrac{3}{5.8}\) + \(\dfrac{3}{8.11}\)+ \(\dfrac{3}{11.14}\) + \(\dfrac{3}{14.17}\) + \(\dfrac{3}{17.20}\))
B = \(\dfrac{2}{3}\) \(\times\) ( \(\dfrac{1}{5}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{11}\) + \(\dfrac{1}{11}\) - \(\dfrac{1}{14}\) + \(\dfrac{1}{14}\) - \(\dfrac{1}{17}\) + \(\dfrac{1}{17}\) - \(\dfrac{1}{20}\))
B = \(\dfrac{2}{3}\) \(\times\) ( \(\dfrac{1}{5}\) - \(\dfrac{1}{20}\))
B = \(\dfrac{2}{3}\) \(\times\) \(\dfrac{3}{20}\)
B = \(\dfrac{1}{10}\) = \(\dfrac{34}{340}\) < \(\dfrac{34}{195}\) + \(\dfrac{1}{1200}\)
Vậy A > B