Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)
\(A=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{3}{2015}\)
\(A=4-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{3}{2015}\right)\)
Xét :
\(\frac{1}{2016}< \frac{1}{2015}\)\(;\)\(\frac{1}{2017}< \frac{1}{2015}\)\(;\)\(\frac{1}{2018}< \frac{1}{2015}\)
\(\Rightarrow\)\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}< \frac{1}{2015}+\frac{1}{2015}+\frac{1}{2015}\)
\(\Leftrightarrow\)\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{3}{2015}< 0\)
Suy ra : \(A=4-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{3}{2015}\right)>4-0=4\) ( đpcm )
...
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)
\(=\frac{2016-1}{2016}+\frac{2017-1}{2017}+\frac{2018-1}{2018}+\frac{2015+3}{2015}\)
\(=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{3}{2015}\)
\(=4+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2017}+\frac{1}{2015}-\frac{1}{2018}\)
mà \(\frac{1}{2015}>\frac{1}{2016};\frac{1}{2017};\frac{1}{2018}\)
\(\Rightarrow A>4\)
Vì:
khi tính bài toán 2015/2016 + 2016/2017 + 2017/2018 + 2018/2019 + 2019/2020 + 2020/2015 này ra thì ta được con số là 6,000003688 con số này phải lớn hơn số 6 nên: 6,000003688 > 6
Vì:khi tính bài toán 2015/2016+2016/2017+2017/2018+2018/2019+ 2019/2020+2020/2015 ta ra được là: 6,000003688 nên: 6,000003688 > 6
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)
A=2015/2016+2016/2017+2017/2018>2015/2018+2016/2018+2017/2018
=6048/2018>1
B=2015+2016+2017/2016+2017+2018=6048/6051<1
=>A>B
Có: B = 2015 + 2016 + 2017/2016 + 2017 + 2018
B= 2015 / (2015 + 2016+2017) + 2016/(2016+2017+2018) + 2017/(2016 + 2017 + 2018)
vì 2015/2016 > 2015/(2016 + 2017+2018) ; 2016/2017>2016/(2016+2017+2018) ; 2017/2018 > 2017/(2016+2017+2018)
=> A>B
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2015}\)
\(=\left(1-\frac{1}{2016}\right)+\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)+\left(1+\frac{3}{2015}\right)\)
\(=1-\frac{1}{2016}+1-\frac{1}{2017}+1-\frac{1}{2018}+1+\frac{1}{2015}+\frac{1}{2015}+\frac{1}{2015}\)
\(=\left(1+1+1+1\right)+\left(\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)\right)\)
\(=4+\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)\)
Vì \(\frac{1}{2015}>\frac{1}{2016};\frac{1}{2015}>\frac{1}{2017};\frac{1}{2015}>\frac{1}{2018}\)
\(\Rightarrow\frac{1}{2015}-\frac{1}{2016}>0;\frac{1}{2015}-\frac{1}{2017}>0;\frac{1}{2015}-\frac{1}{2018}>0\)
\(\Rightarrow\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)>0\)
\(\Rightarrow4+\left(\frac{1}{2015}-\frac{1}{2016}\right)+\left(\frac{1}{2015}-\frac{1}{2017}\right)+\left(\frac{1}{2015}-\frac{1}{2018}\right)>4\)
\(\Rightarrow A>4\left(dpcm\right)\)