Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{a^3+b^3}+\dfrac{\dfrac{9}{4}}{3a^2b}+\dfrac{\dfrac{9}{4}}{3ab^2}+\dfrac{1}{4ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Áp dụng bđt Cauchy-Schwarz dạng Engel có:
\(S\ge\dfrac{\left(1+\dfrac{3}{2}+\dfrac{3}{2}\right)^2}{a^3+3a^2b+3ab^2+b^3}+\dfrac{1}{4ab}.\dfrac{4}{a+b}\)
\(\Leftrightarrow S\ge\dfrac{16}{\left(a+b\right)^3}+\dfrac{1}{\left(a+b\right)^2}.\dfrac{4}{a+b}\)
\(\Leftrightarrow S\ge\dfrac{16}{1}+\dfrac{1}{1}.\dfrac{4}{1}=20\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
Vậy GTNN của \(S=20\) khi \(a=b=\dfrac{1}{2}\)
\(P\ge\dfrac{\left(2a+1+2b+1\right)\left(2a+1+2b+1\right)}{\left(2a+1\right)\left(2b+1\right)}\ge\dfrac{4\left(2a+1\right)\left(2b+1\right)}{\left(2a+1\right)\left(2b+1\right)}=4\)
Vậy \(P_{max}=4\), với a=b=1
Ta có:
\(\left(2a^2-b^2-c^2\right)^2\ge0\)
\(\Leftrightarrow4a^4+b^4+c^4-4a^2b^2-4a^2c^2+2b^2c^2\ge0\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\ge6a^2b^2+6a^2c^2-3a^4\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge3a^2\left(2b^2+2c^2-a^2\right)\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2b^2+2c^2-a^2}}\ge\dfrac{\sqrt{3}a}{a^2+b^2+c^2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}\ge\sqrt{3}\dfrac{a^2}{a^2+b^2+c^2}\)
Tương tự: \(\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}\ge\sqrt{3}.\dfrac{b^2}{a^2+b^2+c^2}\) ; \(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}.\dfrac{c^2}{a^2+b^2+c^2}\)
Cộng vế: \(P\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c\)
con chó\
Ta có :
\(P=a+2b=\left(a-2\right)+2\left(b+3\right)-4\)
\(\Rightarrow P+4=\left(a-2\right)+2\left(b+3\right)\)
\(\Rightarrow\left(P+4\right)^2=\left(\left(a-2\right)+2\left(b+3\right)\right)^2\le\left(1^2+2^2\right)\left(\left(a-2\right)^2+\left(b+3\right)^2\right)\)
\(=25\)
\(\Rightarrow-5\le P+4\le5\)
\(\Rightarrow P\ge-9\)
Dấu " = " xảy ra khi \(\frac{a-2}{1}=\frac{b+3}{2},\left(a-2\right)^2+\left(b+3\right)^2=5\)
\(\Rightarrow a-2=-1,b+3=-2\Rightarrow a=1,b=-5\)