Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
Nếu đúng là zậy thì mk biết làm.
A = 3 + 32 + 33 + ... + 32004
A = ( 3 + 32 + 33 + 34 ) + ... + ( 32001 + 32002 + 32003 + 32004 )
A = 3( 1 + 3 + 32 + 33 ) + ... + 32001( 1 + 3 + 32 + 39 )
A = 3.40 + ... + 32001.40
A = ( 3 + 35 + ... 32001) . 40
=> A chia hết cho 40
Các số hạng trong tổng \(A\) đều chia hết cho \(3\) nên \(\Rightarrow A⋮3\)
Vậy \(A⋮3\)
A=3+3^2+3^3+3^4+...+3^12
A=(3+3^2+3^3)+(3^4+3^5+3^6)+.....+(3^10+3^11+3^12) (gộp nhóm)
A=3.(1+3+3^2)+3^4.(1+3+3^2)+......+3^10.(1+3+3^2) (phân phối)
A=3.13+3^4.13+....+3^10.13
A=13.(3+3^4+....+3^10)
Vì 13⋮13
nên 13.(3+3^4+...+3^10)⋮13
=>A⋮13
\(B=3+3^2+3^3+...+3^{120}\)
Dễ thấy \(B\)chia hết cho \(3\)do là tổng của các số hạng chia hết cho \(3\).
\(B=3+3^2+3^3+...+3^{120}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{119}\right)⋮4\)
\(B=3+3^2+3^3+...+3^{120}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{118}\right)⋮13\)
a) \(B\)là tổng các số hạng chia hết cho \(3\)nên chia hết cho \(3\).
b) \(B=3+3^2+...+3^{120}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{119}\right)⋮4\)
c) \(B=3+3^2+...+3^{120}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{118}\right)⋮13\)
1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{97}\right)\)
\(=30\left(1+2^4+...+2^{96}\right)⋮30\)
2:
\(B=3+3^2+3^3+...+3^{2022}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)
\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)
\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)
`#3107.101107`
\(A=1+3+3^2+3^3+...+3^{101}\)
$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$
$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2) + ... + 3^{99}(1 + 3 + 3^2)$
$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$
$A = 13(1 + 3^3 + ... + 3^{99})$
Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`
`\Rightarrow A \vdots 13`
Vậy, `A \vdots 13.`
\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)
Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)
nên \(A\vdots13\)
\(\text{#}Toru\)
ta có: A=(3+3^2+3^3+3^4)+....+(3^2001+3^2002+3^2003+3^2004)
=>A=120+...+(3^2000.3+3^2000.3^2+3^2000.3^3+3^2000.3^4)
=>A=120+...+3^2000(3+3^2+3^3+3^4)
=>A=120+...3^2000.120
=>A=(1+....+3^2000).120
vì 120 chia hết cho 120 nên A chia hết cho 120=>A chia hết cho 10
A=3+3^2+....+3^2004
=>A=(3+3^2+3^3)+....+(3^2002+3^2003+3^2004)
=>A=39+....+ tự tính như trên
vì 39 chia hết cho 13 nên A chia hết cho 13
ta có: A chia hết cho 10 và A chia hết cho 13 và (10;13)=1 nên A chia hết cho 10.13=>A chia hết cho 130
vậy....
chứng minh chia hết cho 10 và 13