K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

câu a, b trên mạng có nha 

c) do 3 +3^2+3^3+..+3^2004 chia hết cho 3

mà 3 ko chia hết cho 3^2 , 3^2 chia hét cho 3^2 ,.., 3^2004 chia hết cho 3^2 => a ko chia hết cho 3^2

=> a ko là scp ( do scp chie hết cho 3 , ko chia hết cho 3^2 , 3 nguyên tố)

11 tháng 2 2016

b) Ta có

     A = 3 + 32 + ... + 32004.

=> A = 3 ( 1+ 3 + 32 ) + 34  ( 1+ 3 + 32 ) + ... + 32001 ( 1+ 3 + 32 )

=> A = 3 . 13 + 34 . 13 + ... + 32001 . 13

=> A = 13 ( 3 + 34 + ... + 32001)  chia hết cho 13.

   Lại có :

     A = 3 + 32 + ... + 32004.

=> A = ( 3 + 33) + (32 + 34) + ... + ( 32002 + 32004)

=> A = 3 ( 1+ 9) + 32 ( 1+ 9) + ... + 32003 ( 1+ 9)

=> A = 10 ( 3 + 32 + ... + 3 2003) chia hết cho 10.

 Vậy A vừa chia hết cho 13 vừa chia hết cho 10 mà ( 13;10) = 1

=> A chia hết cho 130.

30 tháng 3 2017

A=3+32+33+......+32004

3A=32+33+......+32005

3A-A= ( 32+33+......+32005 ) - ( 3+32+33+......+32004 )

2A=32005-3

A=\(\frac{3^{2005}-3}{2}\)

15 tháng 2 2016

Ta có:

Ư(13)={1;13}

11 tháng 2 2016

210 duyệt nhé

11 tháng 2 2016

ủng hộ mình lên 300 nhé các bạn

27 tháng 7 2016

Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1. 

Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0

27 tháng 7 2016

(2k+1) 2k (2k-1) 
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương

Mình ko chắc đã đúng đâu

12 tháng 2 2016

Có ai làm đc chưa vậy

 

12 tháng 2 2016

Ai giải giùm đi. Đang cần gấp nè

17 tháng 2 2015

huk mìk như pn thuj có 6 đề hsg đây nè

18 tháng 2 2015

Mình giải đc r ^^ 

9 tháng 11 2023

1)

a) �=3+32+33+34+35+36+....+328+329+330

⇔�=(3+32+33)+(34+35+36)+....+(328+329+330)

⇔�=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

⇔�=3.13+34.13+....+328.13

⇔�=13(3+34+....+328)⋮13(����)

b) �=3+32+33+34+35+36+....+325+326+327+328+329+330

⇔�=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

⇔�=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

⇔�=3.364+....+325.364

⇔�=364(3+35+310+....+325)

 

2) �=3+32+33+....+330

⇔3�=3(3+32+33+....+330)

⇔3�=32+33+34+....+330+331

⇔3�−�=(32+33+34+....+330+331)−(3+32+33+....+330)

⇔2�=331−3

⇔�=331−32

Vậy A không phải là số chính phương
Học tốt nha