Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử A là số chính phương
Ta có: \(A=3+3^2+3^3+...+3^{2004}\)
\(=3.\left(1+3+3^2+....+3^{2003}\right)\)
=> A chia hết cho 3
=> A chia hết cho 32 (vì A là số chính phương)
=> 1 + 3 + 32 + ... + 32003 chia hết cho 3 (Vô lí)
=> A không phải là số chính phương
P/s: Không biết đúng không, làm đại
Ta có : \(3⋮3,3^2⋮3,3^3⋮3,.....,3^{2004}⋮3\)
=> A\(⋮\)3 (1)
ta lại có : \(3^2⋮3^2,3^3⋮3^2,....,3^{2004}⋮3^2\) mà 3 không chia hết cho \(3^2\)
=> A không chia hết cho 3^2 (2)
từ (1) , (2) => A không là số chính phương
Giả sử A là số chính phương
A = 3 + 32 + 33 +...+ 32004
A = 3(1 + 3 + 32 +...+ 32004)
=> A chia hết cho 3
=> A chia hết cho 32 (Vì A là số chính phương)
=> 1 + 3 + 32 +...+ 32004 chia hết cho 3 (Điều này rõ ràng vô lí)
Vậy A không là số chính phương
giả sử A là so chính phương
A=3+3 2+3 3+...+3 2004
A=3(1+3+3 2+...+3 2003)
⇒A⋮32(vì A là số chính phương)
⇒ ⋮1+3+3 2+...+3 2004 ⋮3(vô lí)
Vậy a ko là số chính phương
Do lũy thừa của 3 từ 2 trở đi luôn chia hết cho 9 mà 3 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9
=> A không là số chính phương
Ta tính được A=\(\frac{3^{2005}-3}{2}\)=\(\frac{3\cdot\left(3^{2004}-1\right)}{2}\)
Nhận thấy A chia hết cho 3.
Một số chính phương chia hết cho 3 phải chia hết cho 9
mà \(3^{2004}-1\)không chia hết cho 3 nên
\(3\cdot\left(3^{2004}-1\right)\)không chia hết cho 9 hay A không chia hết cho 9
Vậy A không phải là số chính phương
Chúc bạn học tốt!
Có thể làm như sau
32 chia hết cho 9
33 chia hết cho 9
34 chia hết cho 9
...
32004 chia hết cho 9
mà 3 không chia hết cho 9
nên A = 3+ 3^2+3^3+3^4+...+3^2004 không chia hết cho 9
vậy A không là số chính phương