Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Dãy số 3, 8, 13, 23,... có dạng số hạng thứ n là: a_n = 5n - 2.
Vậy số hạng thứ 30 của dãy số trên là: a_30 = 5 x 30 - 2 = 148. 2.
a) Dãy số 1, 4, 9, 16,... có dạng số hạng tổng quát là: a_n = n ^ 2.
b) Để tìm số hạng thứ n, ta giải phương trình n ^ 2 = 625, ta được n = 25.
c) Số hạng thứ 100 là: a_100 = 100^2 = 10000.
3. a) Dãy số 1, 2, 3, 4,... đến 195 có 195 số.
b) Chữ số cuối cùng của dãy số trên là 5.
Ta thấy: 1=(1-1).4+1
5=(2-1).4+1
9=(3-1).4+1
13=(4-1).4+1
17=(5-1).4+1
………………
Quy luật: Mỗi số hạng trong dãy bằng số thứ tự của nó trừ 1 rồi nhân với 4 cuối cùng cộng thêm 1.
a) Gọi số n là số hạng thứ a của dãy.
Ta có: n=(a-1).4+1
=>3 số hạng tiếp theo của dãy là:(6-1).4+1=21
(7-1).4+1=25
(8-1).4+1=29
b)Số hạng thứ 2011 của dãy là: (2011-1).4+1=8041
c)Ta có:S=1+5+9+…+8041
=>\(S=\frac{\left(\left(8041-1\right):4+1\right).\left(8041+1\right)}{2}\)
=>\(S=\frac{\left(8040:4+1\right).8042}{2}\)
=>\(S=\left(2010+1\right).\frac{8042}{2}\)
=>\(S=2011.4021\)
=>\(S=8086231\)
a) dạng tổng quát là: 4k + 1
3 số điền vào la 21;25;29
Số thứ 2011 : 4 x 2011 - 4 + 1 = 8041
Đặt \(\frac{3}{2}\)ra ta có : \(\frac{3}{2}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}......\right)\)
Vậy => công thức chung : \(\frac{3}{2}\left(\frac{1}{x.\left(x+1\right)}\right)\)
=> số thứ 30 :\(\frac{1}{704}\)
Ta có: S= \(\frac{3}{2}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}......\right)\)= \(\frac{3}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...-\frac{1}{33}\right)\)
S=\(\frac{5}{11}\)