K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

A= 4+2^2+2^3+....+2^2015

\(\Rightarrow\)2A=8+2^3+2^4+...+2^2016

\(\Rightarrow\)   2A-A=8+2^3+2^4+....+2^2016 - 4 - 2^2 - 2^3 -.....- 2^2015

\(\Rightarrow\)A=8+2^2016 - 4 - 2^2

\(\Rightarrow\)A=2^2016

Vậy A là lũy thừa của 2

24 tháng 7 2017

Ta có:\(\frac{x^2+3x+9}{x+3}\)=\(\frac{x\left(x+3\right)+9}{x+3}\)= x+\(\frac{9}{x+3}\)

Để x\(^2\)+3x+9 \(⋮\)x+3 \(\Rightarrow\)9\(⋮\)x+3 hay x+3\(\in\)Ư(9)={-1;1;-3;3;-9;9}

\(\Rightarrow\)x+3\(\in\){-1;1;-3;3;-9;9}

\(\Rightarrow\)x\(\in\){-4;-2;-6;0;-12;6}

4 tháng 8 2017

a) \(A=4+4^2+4^3+...+4^{200}\)

\(4A=4^2+4^3+...+4^{201}\)

\(4A-A=3A=4^{201}-4\)

\(A=\frac{4^{201}-4}{3}\)

b) \(B=1+5+5^2+...+5^{2017}\)

\(5B=5+5^2+5^3+...+5^{2018}\)

\(5B-B=4B=5^{2018}-1\)

\(B=\frac{5^{2018}-1}{4}\)

c) \(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{500}}\)

\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{499}}\)

\(3C-C=2C=1-\frac{1}{3^{500}}=\frac{3^{500}-1}{3^{500}}\)

\(C=\frac{\left(\frac{3^{500}-1}{3^{500}}\right)}{2}\)

T_i_c_k cho mình nha,có j ko hiểu cứ hỏi mình nhé ^^

17 tháng 7 2015

Chia tổng trên thành 16 nhóm, mỗi nhóm 6 số hạng ta có:

S=(5+52+53+54+55+56)+56(5+52+53+54+55+56)+...+590(5+52+53+54+55+56)

=(5+52+53+54+55+56)(1+56+...+590)

Ta có 
5+52+53+54+55+56=5(1+53)+52(1+53)+53(1+53)=126(5+52+53)⋮126

→S⋮126

S⋮5.2=10

Vậy tận cùng là 0

6 tháng 8 2019

*Vẽ các trung tuyến BN, CE lần lượt tại B và C. Gọi G là trọng tâm của \(\Delta ABC\)..Nối MN

Áp dụng BĐT tam giác vào \(\Delta AMN\), ta được:

\(AM< AN+NM\)(1)

Mà \(AN=\frac{1}{2}AC\)(Do BN là trung tuyến ứng với cạnh AC)                 (2)

và \(MN=\frac{1}{2}AB\)(Do MN là đường trung bình ứng với cạnh \(AB\)của \(\Delta ABC\))                   (3)

Từ (1), (2) và (3) suy ra \(AM< \frac{1}{2}AB+\frac{1}{2}AC\)

hay \(AM< \frac{1}{2}\left(AB+AC\right)\)         (đpcm)

4 tháng 8 2017

              k truoc roi giai sau

4 tháng 8 2017

vì ƯCLN(a,b)=6

=>a=6k,b=6q(k,q thuộc N, ƯCLN(k,q)=6).

Mà a.b=216

=>6k.6q=216

=>k.q=216:36=6

Lại có:ƯCLN(k,q)=6

*)Nếu k=1 thì q =6=>a=6,b=36

*)Nếu k=2 thì q =3=>a=12,b=18

*)Nếu k=3 thì q=2=>a=18,b=12

*)Nếu k=6 thì q=1=>a=36,b=6

Vậy(a,b)=(6,36)=(12,18)=(18,12)=(36,6).

Chúc bạn học tốt.

13 tháng 7 2018

Ta có; 92=(32)2=34

274=(33)4=312

812=(34)2=38

2432=(35)2=310

13 tháng 7 2018

Ta có :

+) \(9^2=\left(3^2\right)^2=3^4\)

+) \(27^4=\left(3^3\right)^4=3^{12}\)

+) \(81^2=\left(3^4\right)^2=3^8\)

+) \(243^2=\left(3^5\right)^2=3^{10}\)

_Chúc bạn học tốt_

20 tháng 7 2023

Để chứng minh rằng 2 tia phân giác 2 góc đối đỉnh là 2 tia đối nhau, chúng ta cần sử dụng một số khái niệm và định lý trong hình học. Dưới đây là cách chứng minh:

Giả sử chúng ta có hai tia AB và AC, và chúng phân giác hai góc đối đỉnh, tức là góc BAC và góc CAD. Chúng ta cần chứng minh rằng hai tia AB và AC là hai tia đối nhau.

Để chứng minh điều này, ta sẽ sử dụng Định lý Tia Phân Giác (Bisector Theorem) và Định lý Tia Tiếp Tuyến (Alternate Segment Theorem) như sau:

Bước 1: Vẽ đường thẳng đi qua điểm A và song song với tia BC (đường thẳng đó gọi là đường thẳng d).

Bước 2: Do AB là tia phân giác góc BAC, nên theo Định lý Tia Phân Giác, ta có: AB/BD = AC/CD

Bước 3: Do AC là tia phân giác góc CAD, nên theo Định lý Tia Phân Giác, ta có: AC/CD = AB/BD

Bước 4: Từ Bước 2 và Bước 3, ta có: AB/BD = AC/CD = AB/BD Bước 5: Từ Bước 4, ta suy ra AB = AC.

Vậy, chúng ta đã chứng minh rằng hai tia AB và AC là hai tia đối nhau. Hy vọng cách chứng minh trên giúp bạn hiểu và giải đúng bài tập.

19 tháng 7 2023

Để chứng minh rằng 2 tia phân giác 2 góc đối đỉnh là 2 tia đối nhau, chúng ta cần sử dụng một số khái niệm và định lý trong hình học. Dưới đây là cách chứng minh:

Giả sử chúng ta có hai tia AB và AC, và chúng phân giác hai góc đối đỉnh, tức là góc BAC và góc CAD. Chúng ta cần chứng minh rằng hai tia AB và AC là hai tia đối nhau.

Để chứng minh điều này, ta sẽ sử dụng Định lý Tia Phân Giác (Bisector Theorem) và Định lý Tia Tiếp Tuyến (Alternate Segment Theorem) như sau:

Bước 1: Vẽ đường thẳng đi qua điểm A và song song với tia BC (đường thẳng đó gọi là đường thẳng d).

Bước 2: Do AB là tia phân giác góc BAC, nên theo Định lý Tia Phân Giác, ta có: AB/BD = AC/CD

Bước 3: Do AC là tia phân giác góc CAD, nên theo Định lý Tia Phân Giác, ta có: AC/CD = AB/BD

Bước 4: Từ Bước 2 và Bước 3, ta có: AB/BD = AC/CD = AB/BD Bước 5: Từ Bước 4, ta suy ra AB = AC.

Vậy, chúng ta đã chứng minh rằng hai tia AB và AC là hai tia đối nhau. Hy vọng cách chứng minh trên giúp bạn hiểu và giải đúng bài tập.

23 tháng 7 2019

\(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3}=>\frac{a}{-3}=\frac{b}{4}=\frac{2}{6}\)

áp dụng tính chất DTSBN ta có

\(\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{-3+4+6}=\frac{14}{7}=2\)

\(+\frac{a}{-3}=>a=-6\)

\(+\frac{b}{4}=2=>b=8\)

\(+\frac{c}{6}=2=>c=12\)

Ta có;\(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{6}\Rightarrow\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}\)

Áp dụng tính chất dãy tỉ số băng nhau:

 \(\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{-3+4+6}=\frac{14}{7}=2\)

Vậy\(\hept{\begin{cases}a=2\cdot\left(-3\right)=-6\\b=2\cdot4=8\\c=2\cdot6=12\end{cases}}\)