K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

Ta có : A = 5 + 32 + 33 + ... + 32018

<=> A = 1 + 1 + 3 + 32 + 33 + ... + 32018

=> 3A = 3 + 3 + 32 + 33 + 34 + ... + 32019 

Lấy 3A trừ A ta có : 

3A - A = (3 + 3 + 32 + 33 + 34 + ... + 32018 + 32019 ) - (1 + 1 + 3 + 32 + 33 + ... + 32018)

    2A  = 32019 + 3 - 2

    2A  = 32019 + 1

    2A - 1 = 32019

<=> 3n = 32019

=> n = 2019

Vậy n = 2019

29 tháng 11 2019

thank you

1 tháng 11 2019

A=1+1+3+3^2+3^3+...+3^2018

A=1+(1+3+3^2+3^3+...+3^2018)

Đặt:

B=1+3+3^2+3^3+...+3^2018

3B=3.(1+3+3^2+3^3+...+3^2018)

3B=3+3^2+3^3+...+3^2018+3^2019

3B=1+3^2+3^3+...+3^2018+3^2019-1

3B=B+3^2019-1

3B-B=B+3^2019-1-B

2B=3^2019-1

=>2A=2B+1

=3^2019-1+1

=3^2019

2A-1

=3^2019-1

=3^n-1

3^n-1=3^2019-1

=>n=2019

Vậy n=2019

22 tháng 10 2023

nhanh tích cho nhee

22 tháng 10 2023

tui làm b nha do a không biết làm

A=5+32+33+...+32018

3A=15+33+34+...+32019

3A-A=(15+33+34+...+32019)-(5+32+33+...+32018)

2A=32019+15-(5+32)

2A=32019+15-14

2A=32019+1

2A-1=32019+1-1

2A-1=32019

vậy n = 2019

 

10 tháng 8 2015

3A = 3 + 3^2 + 3^3 + .. + 3^100+ 3^101

A = 1 + 3 + 3^2 + .. + 3^100 

3A - A = 3 + 3^2 + 3^3 + .. + 3^100 + 3^101 - 1 - 3 - 3^2 - ... - 3^100

           = 3^101 - 1

2A = 3^101 - 1 

2A + 3 = 3^101 - 1 + 3 = 3^ 101 + 2 khác 3^n 

=> không có n thỏa mãn 

10 tháng 8 2015

Ta có: A=1+3+32+…+3100

=>A.3=3+32+33+…+3101

=>A.3-A=3+32+33+…+3101-1-3-32-…-3100

=>A.2=3101-1

=>A.2+1=3101=3n

=>3101=3n

=>n=101

Vậy n=101

DD
12 tháng 10 2021

\(A=5+3^2+3^3+...+3^{2018}\)

\(3A=15+3^3+3^4+...+3^{2019}\)

\(3A-A=\left(15+3^3+3^4+...+3^{2019}\right)-\left(5+3^2+3^3+...+3^{2018}\right)\)

\(2A=1+3^{2019}\)

\(2A-1=3^{2019}\)

Suy ra \(n=2019\).