Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\) (1)
Lại có: \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)
\(=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-2\sqrt{5}\)
\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)
\(=2\sqrt{5}+3-2\sqrt{5}\)
\(=3\)
\(\Rightarrow a=b+3\)
Thay \(a=b+3\) vào (1), ta được:
\(\left(b+3\right)^2\left(b+3+1\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2024\)
\(=\left(b^2+6b+9\right)\left(b+4\right)-b^3+b^2-11b^2-33b+2024\)
\(=b\left(b^2+6b+9\right)+4\left(b^2+6b+9\right)-b^3-10b^2-33b+2024\)
\(=b^3+6b^2+9b+4b^2+24b+36-b^3-10b^2-33b+2024\)
\(=\left(b^3-b^3\right)+\left(6b^2+4b^2-10b^2\right)+\left(9b+24b-33b\right)+\left(2024+36\right)\)
\(=2060\)
$\Rightarrow$ Chọn đáp án $C$.
Ta có : \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)
\(\Rightarrow a-b=\sqrt{20+12\sqrt{5}+9}-2\sqrt{5}\)
\(\Rightarrow a-b=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)
\(\Rightarrow a-b=2\sqrt{5}+3-2\sqrt{5}\)
\(\Rightarrow a-b=3\)
Xét biểu thức : \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\)
\(=a^3+a^2-b^3+b^2-11ab+2024\)
\(=a^3-b^3+a^2+b^2-2ab-9ab+2024\)
\(=a^3-b^3-9ab+a^2-2ab+b^2+2024\)
\(=a^3-3ab\left(a-b\right)-b^3+\left(a-b\right)^2+2024\) vì \(a-b=3\)
\(=\left(a-b\right)^3+\left(a-b\right)^2+2024\)
\(=3^3+3^2+2024\)
\(=2060\)
\(\Rightarrow C\)
a: \(A=\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\left(\dfrac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}-1\right)\)
\(=\left(1-\sqrt{5}\right)\left(-1-\sqrt{5}\right)\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=5-1=4\)
b: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
\(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}-\dfrac{1}{2\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=-\dfrac{2}{\sqrt{x}+1}\)
c: Khi x=9 thì \(B=\dfrac{-2}{\sqrt{9}+1}=\dfrac{-2}{3+1}=-\dfrac{2}{4}=-\dfrac{1}{2}\)
d: |B|=A
=>\(\left|-\dfrac{2}{\sqrt{x}+1}\right|=4\)
=>\(\dfrac{2}{\sqrt{x}+1}=4\) hoặc \(\dfrac{2}{\sqrt{x}+1}=-4\)
=>\(\sqrt{x}+1=\dfrac{1}{2}\) hoặc \(\sqrt{x}+1=-\dfrac{1}{2}\)
=>\(\sqrt{x}=-\dfrac{1}{2}\)(loại) hoặc \(\sqrt{x}=-\dfrac{3}{2}\)(loại)
Ta có : \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)
\(=\sqrt{20+12\sqrt{5}+9}-2\sqrt{5}\)
\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)
\(=2\sqrt{5}+3-2\sqrt{5}\)
\(=3\).
\(\Rightarrow a=b+3\)
Thế vào A ta được :
\(A=\left(b+3\right)^2\left(b+4\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2017\)
\(=b^3+10b^2+33b+36-b^3+b^2-11b^2-33b+2017\)
\(=2053\)
\(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}=\sqrt{9+2.3.2\sqrt{5}+20}-2\sqrt{5}=\sqrt{3^2+2.3.2\sqrt{5}+\left(2\sqrt{5}\right)^2}-2\sqrt{5}=\sqrt{\left(3+2\sqrt{5}\right)^2}-2\sqrt{5}=3+2\sqrt{5}-2\sqrt{5}=3\Leftrightarrow a=b+3\)
A=\(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2017=\left(b+3\right)^2\left(b+3+1\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2017=\left(b^2+6b+9\right)\left(b+4\right)-b^3+b^2-11b^2-33b+2017=b^3+4b^2+6b^2+24b+9b+36-b^3+b^2-11b^2-33b+2017=b^3+10b^2+9b+33b-b^3-10b^2-33b+2053=2053\Leftrightarrow A=2053\)
1. Với x = 36
=> A= \(\dfrac{\sqrt{36}-2}{\sqrt{36}-1}\)=\(\dfrac{4}{5}\)
2. Với x >0, x ≠1
B=\(\dfrac{x-5}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{4}{\sqrt{x}-1}\)
B=\(\dfrac{x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x-5-2\left(\sqrt{x}-1\right)+4\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x-5-2\sqrt{x}+2+4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
3. P=\(\dfrac{A}{B}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\). \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Ta có \(\sqrt{P}< \dfrac{1}{2}\)
=>P<\(\dfrac{1}{4}\)
=> \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)<\(\dfrac{1}{4}\)
=> \(4\left(\sqrt{x}-2\right)< \sqrt{x}+1\)
=> \(4\sqrt{x}-8< \sqrt{x}+1 \)
=> \(3\sqrt{x}< 9\)
=>\(\sqrt{x}< 3\)
=> x< 9
Lại có x ϵ Z => x ϵ {-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8}
Ta thử lại với x ≠ 1
=> x ϵ {-8,-7,-6,-5,-4,-3,-2,0,2,3,4,5,6,7,8}
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
a: Thay x=9 vào A, ta được:
\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=\dfrac{-5}{2}\)
\(B=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{x-25}=\dfrac{\sqrt{x}+5}{x-25}=\dfrac{1}{\sqrt{x}-5}\)
b: Để \(A=B\cdot\left|x-4\right|\) thì \(\left|x-4\right|=\dfrac{A}{B}=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}:\dfrac{1}{\sqrt{x}-5}=\sqrt{x}+2\)
\(\Leftrightarrow x-4=\sqrt{x}+2\)
\(\Leftrightarrow x-\sqrt{x}-6=0\)
=>x=9
`A)đk:x>=0,x ne 25`
`A=9=>A=(3+2)/(3-5)=-5/2`
`B)B=(3sqrtx-15+20-2sqrtx)/(x-25)`
`=(sqrtx+5)/(x-25)`
`=1/(sqrtx-5)`
`A=B.|x-4|`
`<=>A/B=|x-4|`
`<=>\sqrtx+2=|x-4|`
`<=>\sqrtx+2=(sqrtx+2)|sqrtx-2|`
`<=>|sqrtx-2|=1`
`+)sqrtx-2=1<=>x=9(tm)`
`+)sqrtx-2=-1<=>x=1(tm)`
Vậy `S={1,9}`
a, Thay x=9 vào biểu thức A ta có
\(A=\dfrac{\sqrt{9}+2}{\sqrt{9}-5}\)
\(A=\dfrac{3+2}{3-5}=\dfrac{5}{-2}=-2,5\)
Vậy A =-2,5 khi x=9
a − b = 29 + 12 5 − 2 5 = 3 + 2 5 2 − 2 5 = 3 A = a 3 − b 3 + a 2 + b 2 − 11 a b + 2015 = ( a − b ) ( a 2 + b 2 + a b ) + a 2 + b 2 − 11 a b + 2015 = 3 ( a 2 + b 2 + a b ) + a 2 + b 2 − 11 a b + 2015 = 4 ( a 2 − 2 a b + b 2 ) + 2015 = 4 a - b 2 + 2015 = 2051