K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

a+b+c = 0 
<=> (a+b+c)^2 = 0 
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0 
<=>14 + 2(ab + ac + bc) = 0 
<=> 2(ab + ac + bc) = -14 
<=> ab + ac + bc = -7 
=> (ab + ac + bc)^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49 

Ta có: a^2 + b^2 + c^2 = 14 
=> (a^2 + b^2 + c^2)^2 = 14^2 
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196 
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196 
<=> a^4 + b^4 + c^4 + 2 . 49 = 196 
<=> a^4 + b^4 + c^4 + 98 = 196 
<=> a^4 + b^4 + c^4 = 98 

1 tháng 8 2016

a+b+c=0 nha bạn!

4 tháng 7 2016

Ta có 

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0^2\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

Mà \(a^2+b^2+c^2=14\)

\(\Rightarrow14+2\left(ab+bc+ca\right)=0\Rightarrow2\left(ab+bc+ca\right)=-14\Rightarrow ab+bc+ca=-7\)

\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-7\right)^2\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)

Mà \(a+b+c=0\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=49\)(1)

Ta lại có 

\(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=\left(14\right)^2\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)

\(\Rightarrow a^4+b^4+c^4=196-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)(2)

Thay (1) vào (2) 

\(a^4+b^4+c^4=196-2.49=98\)

nha - Cảm ơn 

CHÚC BẠN HỌC TỐT

5 tháng 10 2018

Vào câu hỏi tương tự đi

5 tháng 10 2018

Ta có: a + b + c = 0

=> (a + b + c)2 = 0

=> a2 + b2 + c2 + 2(ab + bc + ac) = 0

=> 14 + 2(ab + bc + ac) = 0

=> 2ab + 2bc + 2ac = -14

=> (2ab + 2bc + 2ac)2 = 196

=> 4a2b2 + 4a2c2 + 4b2c2 + 8ab2c + 8a2bc + 8abc2 = 196

=> 4(a2b2 + b2c2 + c2a2) + 8abc(b + a + c) = 196

=> 4(a2b2 + b2c2 + c2a2) = 196

=> 2(a2b2 + b2c2 + c2a2) = 98

Có: a2 + b2 + c2 = 14

=> (a2 + b2 + c2)2 = 196

=> a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 196

Mà 2(a2b2 + b2c2 + a2c2) = 98

=> a4 + b4 + c4 = 98

Vậy a4 + b4 + c4 = 98

24 tháng 10 2016

 a+b+c = 0 
<=> (a+b+c)^2 = 0 
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0 
<=>14 + 2(ab + ac + bc) = 0 
<=> 2(ab + ac + bc) = -14 
<=> ab + ac + bc = -7 
=> (ab + ac + bc)^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49 

Ta có: a^2 + b^2 + c^2 = 14 
=> (a^2 + b^2 + c^2)^2 = 14^2 
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196 
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196 
<=> a^4 + b^4 + c^4 + 2 . 49 = 196 
<=> a^4 + b^4 + c^4 + 98 = 196 
<=> a^4 + b^4 + c^4 = 98 

24 tháng 10 2016

 a+b+c = 0 
<=> (a+b+c)^2 = 0 
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0 
<=>14 + 2(ab + ac + bc) = 0 
<=> 2(ab + ac + bc) = -14 
<=> ab + ac + bc = -7 
=> (ab + ac + bc)^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49 

Ta có: a^2 + b^2 + c^2 = 14 
=> (a^2 + b^2 + c^2)^2 = 14^2 
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196 
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196 
<=> a^4 + b^4 + c^4 + 2 . 49 = 196 
<=> a^4 + b^4 + c^4 + 98 = 196 
<=> a^4 + b^4 + c^4 = 98 

29 tháng 1 2017

98

nhớ bấm đúng cho mình nhé!

29 tháng 1 2017

xin lỗi bạn có thể trình bày cách làm đc ko /

9 tháng 6 2015

a+b+c=0

=>(a+b+c)2=0

=>a2+b2+c2+2(ab+bc+ac)=0

=>2(ab+bc+ac)=-14(do a2+b2+c2=14)

Ta có:a2+b2+c2=14

=>(a2+b2+c2)2=196

=>a4+b4+c4+2(a2b2+b2c2+a2c2)=196(1)

2(ab+bc+ac)=-14

=>(2ab+2bc+2ac)2=196

=>4(a2b2+c2b2+a2c2)+2abc(a+b+c)=196

Do a+b+c=0

=>4(a2b2+c2b2+a2c2)=196 =>2(a2b2+c2b2+a2c2)=98(2)

Từ(1) và (2) =>a4+b4+c4=98

9 tháng 6 2015

Sai rồi bạn ơi!

 

15 tháng 8 2017

a2 + b + c2=14

hay(a + b + c)2 = 14

a4 + b4 + c4 =(a2 + b2 + c2).(a2 + b2 + c2)=(a+b+c)2 . (a+b+c)2 =14.14=196

k mk nha bạn kb nữa

6 tháng 1 2017

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.