K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2023

Có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\)

\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\) (do \(\left(a+b+c\right)^2=a^2+b^2+c^2=1\))

12 tháng 3 2023

Áp dụng tính chất các dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)

\(x=a\left(x+y+z\right)=x^2=a^2.\left(x+y+z\right)^2\)

\(y=b\left(x+y+z\right)=y^2=b^2\left(x+y+z\right)^2\)

\(z=c\left(x+y+z\right)=z^2=c^2.\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2=a^2\left(x+y+z\right)^2+b^2\left(x+y+z\right)^2+c^2\left(x+y+z\right)^2\)

                         \(=\left(x+y+z\right)^2\left(a^2+b^2+c^2\right)=\left(x+y+z\right)^2\) (do \(a^2+b^2+c^2=1\))

 

12 tháng 3 2023

https://lazi.vn/edu/exercise/864720/cho-a-b-c-a2-b2-c2-1-va-x-a-y-b-z-c-chung-minh-rang-x-y-z2-x2-y2-z2

liệt phím? Mù mắt?

NV
2 tháng 1 2022

Đề bài sai

Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)

Khi đó  \(x< y\) nhưng \(z< y\)

2 tháng 1 2022

\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)

\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)

                \(b\left(a+c\right)=ba+bc\left(3\right)\)

\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)

\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)

\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

\(\Rightarrow x< y< z\)

23 tháng 4 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

10 tháng 2 2023

Ta có : \(\dfrac{bz-cy}{a}\text{=}\dfrac{cx-az}{b}\text{=}\dfrac{ay-bx}{c}\)

\(\Rightarrow\dfrac{a\left(bz-cy\right)}{a^2}\text{=}\dfrac{b\left(cx-az\right)}{b^2}\text{=}\dfrac{c\left(ay-bx\right)}{c^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a\left(bz-cy\right)}{a^2}\text{=}\dfrac{b\left(cx-az\right)}{b^2}\text{=}\dfrac{c\left(ay-bx\right)}{c^2}\text{=}\dfrac{abz-acy+bcz-baz+cay-cbx}{a^2+b^2+c^2}\text{=}0\)

\(\Rightarrow\dfrac{bz-cy}{a}\text{=}0\Rightarrow bz\text{=}cy\)

\(\Rightarrow\dfrac{b}{c}\text{=}\dfrac{y}{z}\left(1\right)\)

\(\dfrac{cx-az}{b}\text{=}0\Rightarrow cx\text{=}az\)

\(\Rightarrow\dfrac{c}{a}\text{=}\dfrac{z}{x}\left(2\right)\)

Từ (1) và (2):

\(\Rightarrow dpcm\)