K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

ê sao hồi nãy bn chọn câu mình sai 

21 tháng 9 2018

a)

Cách 1: Do \(a,b,c\inℕ^∗\)nên \(a,b,c\ge1\). Do đó:

 \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)

Cách 2 (không thông dụng lắm, mình tự nghĩ ra) 

Dự đoán: \(a=b=c\)

Do đó: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{2a}{a}+\frac{2a}{a}+\frac{2a}{a}=\frac{a\left(2+2+2\right)}{a}=6\) (do a = b = c nên ta thế b, c = a) (đpcm)

b) Từ kết quả a) ta dễ thấy GTNN của S là 6

31 tháng 3 2018

* Chứng minh tổng hai phân số dương nghịch đảo lớn hơn hoặc bằng 2 : 

Cho phân số : \(\frac{a}{b}\)  \(\left(a,b\inℕ^∗\right)\)

\(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)

Do đó : 

\(\frac{a}{b}+\frac{b}{a}-2\ge0\)\(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}\ge2\) ( điều phải chứng minh ) 

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

Chúc bạn học tốt ~ 

31 tháng 3 2018

\(a)\) Ta có : 

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(S=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

Vì tổng của hai phân số nguyên dương nghịch đảo sẽ luôn lớn hơn hoặc bằng 2 nên ta được : 

\(\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\\\frac{b}{c}+\frac{c}{b}\ge2\\\frac{b}{a}+\frac{a}{b}\ge2\end{cases}}\)

Cộng theo vế ba đẳng thức trên ta có : 

\(\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{a}{b}\ge2+2+2\)

\(\Leftrightarrow\)\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)

\(\Leftrightarrow\)\(S\ge6\)

Vậy \(S\ge6\)

\(b)\) Vì \(S\ge6\) nên \(S_{min}=6\) khi \(a=b=c\)

Chúc bạn học tốt ~ 

11 tháng 2 2018

Không sửa đề nha

18 tháng 5 2015

a) \(S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)

\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

Tổng của hai phân số dương nghịch đảo bao giờ cũng lớn hơn hoặc bằng 2 nên :

\(\frac{a}{c}+\frac{c}{a}\ge2\)  ;   \(\frac{b}{c}+\frac{c}{b}\ge2\)   ;    \(\frac{b}{a}+\frac{a}{b}\ge2\)

\(\Rightarrow S\ge2+2+2=6\)

b) \(S\ge6\) nên GTNN của S là 6 ( \(\Leftrightarrow\) a = b =c )

18 tháng 5 2015

a] Ta có : \(S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

\(\Rightarrow S\ge2+2+2=6\)

b] Ta có \(S=6\Leftrightarrow a=b=c\)

GTNN của S =6

4 tháng 2 2020

Bài 1 :

Ta có : \(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

\(=\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Ta chứng minh BĐT \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Thật vậy : BĐT \(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2=\frac{\left(x-y\right)^2}{xy}\ge0\) ( đúng )

Vậy \(\frac{x}{y}+\frac{y}{x}\ge2,\forall x,y>0\)

Áp dụng vào bài toán ta có : \(S\ge2+2+2=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy min \(S=6\) tại \(a=b=c\)

4 tháng 4 2019

\(a,S=\left[\frac{a}{c}+\frac{b}{c}\right]+\left[\frac{b}{c}+\frac{c}{a}\right]+\left[\frac{c}{b}+\frac{a}{b}\right]\)

\(S=\left[\frac{a}{c}+\frac{c}{a}\right]+\left[\frac{b}{c}+\frac{c}{b}\right]+\left[\frac{b}{a}+\frac{a}{b}\right]\)

\(S\ge2+2+2=6\)

\(b,GTNN\)của \(S=6\Leftrightarrow a=b=c\inℕ\)

30 tháng 3 2019

Mn đừng chép bài giải ở CHTT nha vì em chưa học đến, giải = cách lớp 6 thôi ạ.

30 tháng 3 2019

Ace Legona Rồng Đom Đóm Nguyen Nguyễn Thành Trương Nguyễn Thị Ngọc Thơ Nguyễn Thị Thảo Vy Lê Anh Duy Y Nguyễn Huy Thắng Khôi Bùi ...

26 tháng 4 2017

a,b,c là gì?

27 tháng 4 2017

a,b,c nó ko cho,mình phải tự tìm

6 tháng 4 2017

Sửa đề: chứng minh \(S\ge6\)

Ta có: 

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)+6\)

\(=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{a}}\right)^2+\left(\sqrt{\frac{a}{c}}-\sqrt{\frac{c}{a}}\right)^2+6\ge6\)

\(\Rightarrow\)ĐPCM

7 tháng 4 2017

Đây nè k cho mình nha:

Ta có \(\frac{a+b}{c}>\frac{a+b}{a+b+c}\)

         \(\frac{b+c}{a}>\frac{b+c}{a+b+c}\)

         \(\frac{a+c}{b}>\frac{a+c}{a+b+c}\)

Suy ra \(S>\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{a+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Vậy S > 2