K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2021

Bất đẳng thức ngược dấu rồi.

BĐT \(\Leftrightarrow\left(a+b+c\right)\prod\left(a+b-c\right)\le a^4+b^4+c^4\)

Đặt $\left\{ \begin{array}{l}a + b + c = 2s\\ab + bc + ca = {s^2} + 4Rr + {r^2}\\abc = 4sRr\end{array} \right.$

Bất đẳng thức cần chứng minh quy về:

\(16\,r{s}^{2} \left( R-2\,r \right) +2\,{s}^{2} \left( 5\,{r}^{ 2}+{s}^{2} -16\,Rr\right) +2\,{r}^{2} \left( 16\,{R}^{2}+8\,Rr+{r}^{2}-3\,{s} ^{2} \right) \geqslant 0\)

Đây là điều hiển nhiên.

17 tháng 1 2021

Mk ko hiểu bạn ơi tthnew 

Bạn dùng phương pháp biến đổi tg đg thử đi bạn 

16 tháng 1 2021

BĐT trên bị ngược dấu rồi.

Theo công thức Heron:

\(S=\dfrac{1}{4}\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}\).

Do đó ta chỉ cần cm:

\(\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\leq a^2b^2+b^2c^2+c^2a^2\). (1)

Ta có \(\left(1\right)\Leftrightarrow a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\ge0\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2}{2}+\dfrac{\left(b^2-c^2\right)^2}{2}+\dfrac{\left(c^2-a^2\right)^2}{2}\ge0\) (luôn đúng).

Do đó bđt ban đầu cũng đúng.

Đẳng thức xảy ra khi tam giác đó đều.

17 tháng 1 2021

Bất đẳng thức mà sao dấu =.

17 tháng 1 2021

E lộn ạ . SỬ thành dấu \(\ge\)

1 tháng 9 2023

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta sử dụng bất đẳng thức tam giác. Bất đẳng thức tam giác cho biết rằng tổng độ dài của ba đường trung tuyến của một tam giác luôn lớn hơn hoặc bằng bình phương độ dài cạnh tương ứng. Vì vậy, ta có:

ama + bmb + cmc ≥ (ma + mb + mc)²/3

Theo định lý đường trung tuyến, ta biết rằng ma + mb + mc = 3/2(a + b + c). Thay vào biểu thức trên, ta có:

ama + bmb + cmc ≥ (3/2(a + b + c))²/3

Simplifying the expression, we get:

ama + bmb + cmc ≥ 3/4(a + b + c)²

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta cần chứng minh rằng 3/4(a + b + c)² ≥ √32. Tuy nhiên, để chứng minh điều này, cần thêm thông tin về giá trị của a, b, c.

2 tháng 7

                                                                         Nguyễn Văn A                                                                                                         

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
28 tháng 9 2023

Áp dụng công thức đường trung tuyến

\(m_a^2+m_b^2+m_c^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}+\dfrac{c^2+a^2}{2}-\dfrac{b^2}{4}+\dfrac{a^2+b^2}{2}-\dfrac{c^2}{4}\)

                          \(=\dfrac{3}{4}\left(a^2+b^2+c^2\right)\)

Chọn A

a: vecto AB=(1;3)

vecto AC=(9;-3)

Vì vecto AB*vecto AC=1*9+3*(-3)=0

nên ΔABC vuông tại A

b: ABCD là hình chữ nhật

=>vecto AB=vecto DC

=>10-x=1 và -2-y=3

=>x=9 và y=-5

21 tháng 9 2023

a) Ta có: 

\(\widehat{A}=180^o-60^o-45^o=75^o\)

Áp dụng định lý sin ta có:

\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\)

\(\Rightarrow AC=\dfrac{BC\cdot sinB}{sinA}\)

\(\Rightarrow AC=\dfrac{a\cdot sin60^o}{sin75^o}=a\cdot\dfrac{3\sqrt{2}-\sqrt{6}}{2}\) 

\(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)

\(\Rightarrow AB=\dfrac{BC\cdot sinC}{sinA}\)

\(\Rightarrow AB=\dfrac{a\cdot sin45^o}{sin75^o}=a\cdot\left(\sqrt{3}-1\right)\) 

b) \(cos75^o\)

\(=cos\left(30^o+45^o\right)\)

\(=cos30^o\cdot cos45^o-sin30^o\cdot sin45^o\)

\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}\)

\(=\dfrac{\sqrt{2}}{2}\cdot\left(\dfrac{\sqrt{3}-1}{2}\right)\)

\(=\dfrac{\sqrt{6}-\sqrt{2}}{4}\left(dpcm\right)\)