Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT trên bị ngược dấu rồi.
Theo công thức Heron:
\(S=\dfrac{1}{4}\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}\).
Do đó ta chỉ cần cm:
\(\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\leq a^2b^2+b^2c^2+c^2a^2\). (1)
Ta có \(\left(1\right)\Leftrightarrow a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\ge0\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2}{2}+\dfrac{\left(b^2-c^2\right)^2}{2}+\dfrac{\left(c^2-a^2\right)^2}{2}\ge0\) (luôn đúng).
Do đó bđt ban đầu cũng đúng.
Đẳng thức xảy ra khi tam giác đó đều.
Để chứng minh rằng ama + bmb + cmc ≥ √32, ta sử dụng bất đẳng thức tam giác. Bất đẳng thức tam giác cho biết rằng tổng độ dài của ba đường trung tuyến của một tam giác luôn lớn hơn hoặc bằng bình phương độ dài cạnh tương ứng. Vì vậy, ta có:
ama + bmb + cmc ≥ (ma + mb + mc)²/3
Theo định lý đường trung tuyến, ta biết rằng ma + mb + mc = 3/2(a + b + c). Thay vào biểu thức trên, ta có:
ama + bmb + cmc ≥ (3/2(a + b + c))²/3
Simplifying the expression, we get:
ama + bmb + cmc ≥ 3/4(a + b + c)²
Để chứng minh rằng ama + bmb + cmc ≥ √32, ta cần chứng minh rằng 3/4(a + b + c)² ≥ √32. Tuy nhiên, để chứng minh điều này, cần thêm thông tin về giá trị của a, b, c.
a: vecto AB=(1;3)
vecto AC=(9;-3)
Vì vecto AB*vecto AC=1*9+3*(-3)=0
nên ΔABC vuông tại A
b: ABCD là hình chữ nhật
=>vecto AB=vecto DC
=>10-x=1 và -2-y=3
=>x=9 và y=-5
a) Ta có:
\(\widehat{A}=180^o-60^o-45^o=75^o\)
Áp dụng định lý sin ta có:
\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\)
\(\Rightarrow AC=\dfrac{BC\cdot sinB}{sinA}\)
\(\Rightarrow AC=\dfrac{a\cdot sin60^o}{sin75^o}=a\cdot\dfrac{3\sqrt{2}-\sqrt{6}}{2}\)
\(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
\(\Rightarrow AB=\dfrac{BC\cdot sinC}{sinA}\)
\(\Rightarrow AB=\dfrac{a\cdot sin45^o}{sin75^o}=a\cdot\left(\sqrt{3}-1\right)\)
b) \(cos75^o\)
\(=cos\left(30^o+45^o\right)\)
\(=cos30^o\cdot cos45^o-sin30^o\cdot sin45^o\)
\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}\)
\(=\dfrac{\sqrt{2}}{2}\cdot\left(\dfrac{\sqrt{3}-1}{2}\right)\)
\(=\dfrac{\sqrt{6}-\sqrt{2}}{4}\left(dpcm\right)\)
Bất đẳng thức ngược dấu rồi.
BĐT \(\Leftrightarrow\left(a+b+c\right)\prod\left(a+b-c\right)\le a^4+b^4+c^4\)
Đặt $\left\{ \begin{array}{l}a + b + c = 2s\\ab + bc + ca = {s^2} + 4Rr + {r^2}\\abc = 4sRr\end{array} \right.$
Bất đẳng thức cần chứng minh quy về:
\(16\,r{s}^{2} \left( R-2\,r \right) +2\,{s}^{2} \left( 5\,{r}^{ 2}+{s}^{2} -16\,Rr\right) +2\,{r}^{2} \left( 16\,{R}^{2}+8\,Rr+{r}^{2}-3\,{s} ^{2} \right) \geqslant 0\)
Đây là điều hiển nhiên.
Mk ko hiểu bạn ơi tthnew
Bạn dùng phương pháp biến đổi tg đg thử đi bạn