K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

\(-\) Chia 4 số a , b , c , d cho 3 có thể xảy ra 3 trường hợp về số dư là dư 0 , dư 1 , dư 2 .Do đó có ít nhất có 2 số có cùng số dư khi chia cho 3 .Do đó 1 hiệu trong tích trên chia hết cho 3 .Suy ra tích đó chia hết cho 3

\(-\)Chia 4 số a , b , c , d cho 4 , ta xét 4 số a , b , c , d chia hết cho 2 .Có thể xảy ra 2 trường hợp về số dư là dư 0 , dư 1 .Do đó tồn tại ít nhất 2 cặp số có cùng số dư khi chia cho 2 .Nên các hiệu trên ít nhất có 2 hiệu chia hết cho 2 .Do đó tích trên chia hết cho 4

Mà ƯCLN ( 3 , 4 ) = 1

Suy ra tích trên chia hết cho 12

22 tháng 7 2015

Trong 4 số a,b,c,d có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số a,b,c,d : nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4.

Nếu không thì 4 số dư theo thứ tự 0,1,2,3  trong 4 số a,b,c,d có 2 số chẵn, 2 số lẽ.

Hiệu của 2 số chẵn và 2 số lẽ trong 4 số đó chia hết cho 2

\(\Rightarrow\) Tích trên chia hết cho 3 và 4.

Mà ƯCLN(3; 4) = 1 nên (a-b).(a-c).(b-c).(b-d).(c-d) chia hết cho (3 . 4) = 12.

19 tháng 5 2018

chia hết cho 3 và 4

13 tháng 9 2015

+) Chia 4 số a; b; c;d cho 3 . Số dư có thể là 0; 1; 2

theo nguyên lí Dirichle: có ít nhất 2 trong 4 số a; b; c; d có cùng số dư khi chia cho 3

=> Hiệu hai số đó chia hết cho 3

=> Trong số tất cả các hiệu a-b; a - c; a - d; b - c; b - c; c - d có hiệu chia hết cho 3

=> tích A chia hết cho 3     (*)

+) Xét 3 số a; b; c . chia 3 số đó cho 2 . Số dư có thể là 0;1

Theo nguyên lí Dirichle: có ít nhất 2 trong số a; b; c có cùng số dư khi chia cho 2

=> Hiệu hai số đó chia hết cho 2

=> Trong hiệu a - b; a - c; b - c có hiệu chia hết cho 2

=> Tích (a - b)(a - c)(b - c) chia hết cho 2

+) Xét 3 số b; c; d . tương tự như trên => Có ít nhất 2 trong 3 số b; c;d có cùng số dư khi chia cho 2

- Nếu d cùng số dư với b hoặc c => (b - d) hoặc (c - d) chia hết cho 2 => tích (a - d)(b - d)(c - d) chia hết cho 2

- Nếu d không cùng số dư với cả b và c => b và c có cùng số dư 

* Nếu a cùng số dư với b; c => a - b; b - c chia hết cho 2 => Tích (a - b)(a - c)(b - c) chia hết cho 2 chia hết cho 4

* Nếu a không cùng số dư với b và c => a và d cùng số dư => a - d chia hết cho 2 => tích (a - d)(b - d)(c - d) chia hết cho 2 

=> Tích A luôn chia hết cho 4   (**)

Từ (*)(**) =>A  luôn chia hết cho 3.4 = 12

 

9 tháng 11 2020

lồn mẹ mi ạ làm sai to

30 tháng 1 2022

bài j ghê z =))

30 tháng 1 2022

- Nguyên lí Dirichlet nhé ông.

16 tháng 5 2016

Trong 4 số a,b,c,d có ít nhất 2 số cùng số dư khi chia cho 3.
Trong 4 số a,b,c,d : nếu có 2 số cùng số dư khi chia cho 4 thì hiệu 2 số đó sẽ chia hết cho 4.

Nếu không thì 4 số dư theo thứ tự 0,1,2,3  trong 4 số a,b,c,d có 2 số chẵn, 2 số lẽ.

Hiệu của 2 số chẵn và 2 số lẽ trong 4 số đó chia hết cho 2

 Tích trên chia hết cho 3 và 4.

Mà ƯCLN(3; 4) = 1 nên (a-b).(a-c).(b-c).(b-d).(c-d) chia hết cho (3 . 4) = 12.