K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

https://olm.vn/hoi-dap/question/968041.html

bài này đăng rồi mà khác mỗi số thay 10 =12 thôi

đ/s 72

10 tháng 6 2017

tham khảo nè bạn : Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

10 tháng 6 2017

Lê Kim Nhi

Ta có: ab + ac + bc = -7                        (ab+ac+bc)2=49

nên

(ab)2+(bc)2+(ac)2=49

nên a4+b4+c4=(a2+b2+c2)2−2(ab)2−2(ac)2−2(bc)2= 98

14 tháng 3 2019

ta có \(a^2,b^2,c^2\ge0\)

mà \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\Rightarrow a+b+c=0\)

Điều này trái với GT a+b+c=6 \(\Rightarrow\)Đề sai 

còn a+b+c=0 và a^2+b^2+c^2=6 thì bài này có nhiều trên mạng lắm search ik 

14 tháng 3 2019

Thank you

5 tháng 7 2023

Theo đề có \(a+b+c=0 \Rightarrow (a+b+c)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow ab+bc+ca=\frac{0-2}{2} = -1\) (Vì \(a^2+b^2+c^2=2\))

\(\Rightarrow (ab+bc+ca)^2=1 \)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2bc^2a+2ca^2b=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2 = 1\) (vì \(a+b+c=0\))

Mặt khác từ `a^2+b^2+c^2=2`

`\Rightarrow(a^2+b^2+c^2)^2=2^2`

`\Rightarrowa^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)=4`

`\Rightarrowa^4+b^4+c^4+2.1=4`

`\Rightarrowa^4+b^4+c^4=4-2=2`

4 tháng 11 2015

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\Leftrightarrow1+2\left(ab+bc+ca\right)=0\Leftrightarrow ab+bc+ca=\frac{1}{2}\)

nên \(\left(ab+bc+ca\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)

Mặt khác, ta có \(a^2+b^2+c^2=2\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\Leftrightarrow a^4+b^4+c^4+\frac{1}{2}=4\Leftrightarrow a^4+b^4+c^4=\frac{7}{2}\)

Vậy, ...

24 tháng 10 2016

 a+b+c = 0 
<=> (a+b+c)^2 = 0 
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0 
<=>14 + 2(ab + ac + bc) = 0 
<=> 2(ab + ac + bc) = -14 
<=> ab + ac + bc = -7 
=> (ab + ac + bc)^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49 

Ta có: a^2 + b^2 + c^2 = 14 
=> (a^2 + b^2 + c^2)^2 = 14^2 
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196 
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196 
<=> a^4 + b^4 + c^4 + 2 . 49 = 196 
<=> a^4 + b^4 + c^4 + 98 = 196 
<=> a^4 + b^4 + c^4 = 98 

24 tháng 10 2016

 a+b+c = 0 
<=> (a+b+c)^2 = 0 
<=> a^2 + b^2 + c^2 + 2 ab + 2ac + 2bc = 0 
<=>14 + 2(ab + ac + bc) = 0 
<=> 2(ab + ac + bc) = -14 
<=> ab + ac + bc = -7 
=> (ab + ac + bc)^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2a^2bc + 2 ab^2c + 2abc^2 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c) = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 + 2abc . 0 = 49 
<=> a^2b^2 + a^2c^2 + b^2c^2 = 49 

Ta có: a^2 + b^2 + c^2 = 14 
=> (a^2 + b^2 + c^2)^2 = 14^2 
<=> a^4 + b^4 + c^4 + 2a^2b^2 + 2a^2c^2 + 2 b^2c^2 =196 
<=> a^4 + b^4 + c^4 + 2(a^2b^2 + a^2c^2 + b^2c^2) = 196 
<=> a^4 + b^4 + c^4 + 2 . 49 = 196 
<=> a^4 + b^4 + c^4 + 98 = 196 
<=> a^4 + b^4 + c^4 = 98 

29 tháng 1 2017

98

nhớ bấm đúng cho mình nhé!

29 tháng 1 2017

xin lỗi bạn có thể trình bày cách làm đc ko /

13 tháng 11 2016

Đặt A=a4+b4+c4

ta có:

a+b+c=0

=>(a+b+c)2=0

=> a2+b2+c2+2ab+2bc+2ca=0

=> (a2+b2+c2)+2(ab+bc+ca)=0

=>2+2(ab+bc+ca)=0

=>2(ab+bc+ca)=-2

=> ab+bc+ca=-1

Ta có:

ab+bc+ca=-1

=> (ab+bc+ca)2=1

=>a2b2+b2c2+c2a2+2ab2c+2bc2a+2ca2b=1

=>(a2b2+b2c2+c2a2) + 2abc(b+c+a)=1

=>(a2b2+b2c2+c2a2) =1

Ta có:

A=a4+b4+c4

A=(a4+b4+c4+2a2b2+2b2c2+2c2a2) - (2a2b2+2b2c2+2c2a2)

A=(a2+b2+c2)2 - 2(a2b2+b2c2+c2a2)

A= 22- 2.1

A=4-2=2

Vậy a4+b4+c4=2