Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: a+b chia hết cho 2
=> a và b chia hết cho 2
=> a và b là số chẵn
Vì tất cả các số chẵn nhân với bất kì số nào thì nó vẫn là số chẵn.
=> a+3b chia hết cho 2
Ta có 4a+5b chia hết cho 23 => 4(4a+5b)=16a+20b chia hết cho 23
16a+20b+7a+3b = 23a+23b chia hết cho 23
mà 16a+20b chia hết cho 23 nên 7a+3b chia hết cho 23 (dpcm)
Vì a+b chia hết cho 2 mà ta lại có 2b chia hết cho 2 với mọi b thuộc N nên:
a+b+2b chia hết cho 2 hay a+3b chia hết cho 2
=>ĐPCM
1) A = 120a + 36b
=> A = 12.10.a + 12.3.b
=> A = 12.(10a+3b)
Do 12.(10a+3b) \(⋮\)12
nên 120a+36b \(⋮\)12
2) Gọi (2a+7b) là (1)
(4a+2b) là (2)
Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)
Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3
Hay 4a+2b chia hết cho 3
3) Gọi (a+b) là (1)
(a+3b) là (2)
Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2
Hay (a+3b) chia hết cho 2
a, n(n+1)(n+2)
nhận xét :
n; n+1; n+2 là 3 số tự nhiên liên tiếp
=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3 (1)
ƯCLN(2;3) = 1 (2)
(1)(2) => n(n+1)(n+2) \(⋮\) 6
b, 3a + 5b \(⋮\) 8
=> 5(3a + 5b) \(⋮\) 8
=> 15a + 25b \(⋮\) 8
3(5a + 3b) = 15a + 9b
xét hiệu :
(15a + 25b) - (15a + 9b)
= 15a + 25b - 15a - 9b
= (15a - 15a) + (25b - 9b)
= 0 + 16b
= 16b và (3;5) = 1
=> 5a + 3b \(⋮\) 8
c, làm tương tự câu b
Ta có:
\(\hept{\begin{cases}a+b⋮2\\2b⋮2\end{cases}}\Rightarrow a+b+2b⋮2\Rightarrow a+3b⋮2.\)
Vì a + b chia hết cho 2, ta có thể viết a + b = 2k, với k là một số nguyên.
Tương tự, ta có 3b = 2m, với m là một số nguyên. Khi đó, ta có:
a + 3b = 2k + 2m = 2(k + m).
Vì k + m cũng là một số nguyên, nên ta kết luận rằng (a + 3b) chia hết cho 2.
Vậy, đáp án đúng là (a + 3b) chia hết cho 2.