K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2015

Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1).

Lấy (1) - 39b (luôn chia hết cho 13) đc 10a +b

\(\Rightarrow\) 10a + b chia hết cho 13. (đpcm)

Ngược lại cũng tương tự.

15 tháng 7 2015

a+4b chia hết cho 13

=>10(a+4b)chia hết cho 13 

=>10a+40bchia hết cho 13 (1)

giả sử 10a+b chia hết cho 13 (2)

từ (1)và (2)

 =>(10a+40b)-(10a+40b)chia hết cho 13

=>10a+40b-10a-40b chia hết cho 13

=>39a chia hết cho 13

=>13(3a)chia hết cho 13(thỏa mãn)☺

5 tháng 7 2015

\(10a+b=\left(10a+40b\right)-39b=10\left(a+4b\right)-39b\)

ta có: a+4b chia hết cho 13 => 10(a+4b) chia hết cho 13

39b=13.3b => chia hết cho 13

=> 10a+b chia hết cho 13

27 tháng 10 2023

Mình đang cần gấp ạ

2 tháng 9 2021

10a+b\(⋮\)13

=> 4(10a+b)\(⋮\)13

=> 40a+4b\(⋮\)13

=> a+4b+39a\(⋮\)13

Mà 39a\(⋮\)13 nên a+4b\(⋮\)13

Vậy nếu 10a+b\(⋮\)13 thì a+4b\(⋮\)13

+) Chứng minh chiều xuối :

Cho a + 4b ⋮ 13 ; CMR : 10a + b ⋮ 13

Vì a + 4b ⋮ 13 => 10 . ( a + 4b ) ⋮ 13 => 10a + 40b ⋮ 13

Xét hiệu ( 10a + 40b ) - ( 10a + b ) = 39b ⋮ 13

\(\text{Vì }\hept{\begin{cases}10a+40b⋮13\\\left(10a+40b\right)-\left(10a+b\right)⋮13\end{cases}}\)

=> 10a + b ⋮ 13 (1) 

+) Chứng minh chiều ngược :

Cho 10a + b ⋮ 13 ; CMR : a + 4b ⋮ 13

Vì 10a + b ⋮ 13 => 4 . ( 10b + a ) ⋮ 13 => 40a + 4b ⋮ 13

Xét hiệu : ( 40a + 4b ) - ( a + 4b ) = 39a ⋮ 13

\(\text{Vì }\hept{\begin{cases}40a + 4b ⋮ 13\\\left(40a+4b\right)-\left(a+4b\right)⋮13\end{cases}}\)

=> a + 4b ⋮ 13 (2)

Từ (1) và (2) => a + 4b ⋮ 13 <=> 10a + b ⋮ 13

6 tháng 1 2016

10a + b chia hết cho 13

10a + b + 39b chia hết cho 13

10a + 40b chia hết cho 13

10(a + 4b) chia hết cho 13

Vì UCLN(10 ; 13)  = 1

Do đó a + 4b chia hết cho 13

2 tháng 8 2015

 Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1). Lấy (1) - 39b (luôn chia hết cho 13) dc 10a +b -> 10a + b chia hết cho 13. Ngược lại cũng tương tự.

9 tháng 8 2017

 Nếu a + 4b chia hết cho 13

-> 10a + 40b chia hết cho 13 (1). Lấy (1) - 39b (luôn chia hết cho 13) dc 10a +b

-> 10a + b chia hết cho 13. 

12 tháng 12 2017

ta có:\(10a+b⋮13\Rightarrow40a+4b⋮13\)

\(\Leftrightarrow39a+\left(a+4b\right)⋮13\)

\(39a⋮13\Rightarrow a+4b⋮13\left(đpcm\right)\)

12 tháng 2 2015

Nếu (a + 4b) chia hết 13 thì 10.(a + 4b) cũng chia hết cho 13

Vì 39b chia hết cho 13

Nên 10.(a + 4b) - 39b cũng chia hết cho 13

Chứng tỏ 10a + b chia hết cho 13

(39b là mình lấy từ 10.(a + 4b) -10a + b đó bạn)

12 tháng 2 2015

Nếu (a + 4b) chia hết 13 thì 10.(a + 4b) cũng chia hết cho 13

Vì 39b chia hết cho 13

Nên 10.(a + 4b) - 39b cũng chia hết cho 13

Chứng tỏ 10a + b chia hết cho 13

(39b là mình lấy từ 10.(a + 4b) -10a + b )

30 tháng 6 2015

a + 4b chia hết 13 => 10 ( a + 4b ) cũng chia hết 13

mà 10( a + 4b ) = 10a + 40b = 10a + b + 39b

xét tổng trên thấy 39b chia hết 13 => 10a + b chia hết 13 ( đpcm )

2 tháng 1 2017

a+4b chia hết cho 13 suy ra 10a+4b cũng chia hết cho 13

k mình nè

30 tháng 6 2015

a+4b chia hết cho 13=>3(a+4b) chia hết cho 13

hay 3a+12b chia hết cho 13

mà 13a+13b chia hết cho 13

=>13a+13b-3a+12b=10a+b chia hết cho 13 (đpcm)