Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1.2}+\frac{3}{2.3}+........+\frac{3}{99.100}\)
\(=3\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\right)\)
\(=3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)\)
\(=\frac{3.99}{100}=\frac{297}{100}\)
1/1x2+1/2x3+...+1/49x50
=1-1/2+1/2-1/3+.....+1/49-1/50
=1-1/50(1)
Ta co 1(2)
So sanh (1) voi (2) ta thay 1-1/50<1
=>1/1x2+...+1/49x50<1
(Phuong phap khu)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
=\(\frac{1}{1}-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}<1\)
Vậy \(\frac{49}{50}<1\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\Rightarrowđpcm\)
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
Mà : \(\frac{99}{100}< 1\)
Vậy : S < 1
H = \(\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+\frac{1}{3.4}-\frac{1}{3.4.5}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\right)\)
Đặt G = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
= \(1-\frac{1}{100}\)
= \(\frac{99}{100}\)
Đặt K = \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\right)\)
=>2K = \(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{99.100.101}\right)\)
= \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\)
= \(\frac{1}{1.2}-\frac{1}{100.101}\)
= \(\frac{1}{2}-\frac{1}{10100}\)
= \(\frac{5049}{10100}\)
=> K =\(\frac{5049}{10100}:2=\frac{5049}{10100}.\frac{1}{2}=\frac{5049}{20200}\)
Thay G,K vào H ta có :
H = \(\frac{99}{100}-\frac{5049}{20200}\)
Tự tính :)
\(H=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.34}+...+\frac{1}{99.100.101}\right)\)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{99.100.101}\right)\)
\(=\left(1-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(=\frac{99}{100}-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{99}{100}-\frac{1}{2}.\frac{5049}{10100}=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)
a) \(\frac{3}{40}+\frac{5}{3}+\frac{7}{60}=\frac{9}{120}+\frac{200}{120}+\frac{14}{120}=\frac{223}{120}\)
b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{19.20}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)
Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)