Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{ABF}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔBAC cân tại A)
nên \(\widehat{ABF}=\widehat{ACE}\)
Xét ΔABF và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABF}=\widehat{ACE}\)(cmt)
BF=CE(gt)
Do đó: ΔABF=ΔACE(c-g-c)
Suy ra: AF=AE(Hai cạnh tương ứng)
Xét ΔAFE có AF=AE(Cmt)
nên ΔAFE cân tại A(Định nghĩa tam giác cân)
\(\frac{3n+2}{2n-1}\in Z\Rightarrow\frac{2\left(3n+2\right)}{2n-1}\in Z\Rightarrow3+\frac{7}{2n-1}\in Z\)
\(\Rightarrow\frac{7}{2n-1}\in Z\Rightarrow2n-1=Ư\left(7\right)=\left\{-1;1;7\right\}\)
\(\Rightarrow n=\left\{0;1;4\right\}\)
Vậy \(A=\left\{0;1;4\right\}\)
a: \(n\left(A\cap B\right)< =n\left(A\right)\le n\left(A\cup B\right)\)
b: \(n\left(A\ B\right)< =n\left(A\right)+n\left(B\right)< =n\left(A\cup B\right)\)