Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc KOA+góc BOA=90 độ
góc KAO+góc COA=90 độ
mà góc BOA=góc COA
nên góc KOA=góc KAO
=>ΔKAO cân tại K
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
=>góc BOA=60 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA=R
=>I là trung điểm của OA
ΔKAO cân tại K
mà KI là trung tuyến
nên KI vuông góc với OI
=>KI là tiếp tuyến của (O)
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC và AO là phân giác của góc BAC và OA là phân giác của góc BOC
Ta có: \(\widehat{KAO}+\widehat{COA}=90^0\)(ΔCAO vuông tại C)
\(\widehat{KOA}+\widehat{BOA}=\widehat{BOK}=90^0\)
mà \(\widehat{COA}=\widehat{BOA}\)
nên \(\widehat{KAO}=\widehat{KOA}\)
=>ΔKAO cân tại K
b:
Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
Ta có: ΔBOA vuông tại B
=>\(\widehat{BAO}+\widehat{BOA}=90^0\)
=>\(\widehat{BOA}=90^0-30^0=60^0\)
Xét ΔOBI có OB=OI và \(\widehat{BOI}=60^0\)
nên ΔOBI đều
=>OI=OB=1/2OA=R
=>I là trung điểm của OA
ΔKAO cân tại K
mà KI là trung tuyến
nên KI vuông góc với OI
=>KI là tiếp tuyến của (O)
a: ΔOBC cân tại O
mà OA là đường cao
nên OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O;R)
b: \(\widehat{MOA}+\widehat{COA}=\widehat{MOC}=90^0\)
\(\widehat{MAO}+\widehat{BOA}=90^0\)(ΔBAO vuông tại B)
mà \(\widehat{COA}=\widehat{BOA}\)
nên \(\widehat{MOA}=\widehat{MAO}\)
=>ΔMAO cân tại M