Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{12+\sqrt{12+\sqrt{12}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6}}}}< \sqrt{12+\sqrt{12+\sqrt{16}}}+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{9}}}}\)\(=7\)
\(B=\sqrt{14}+\sqrt{11}>\sqrt{13,69}+\sqrt{10,89}=7\)
\(\Rightarrow A< B\)
Ta có:
\(12< 16\Rightarrow\sqrt{12}< \sqrt{16}=4\\ 6< 9\Rightarrow\sqrt{6}< \sqrt{9}=3\)
\(\Rightarrow A< \sqrt{12+\sqrt{12+4}}+\sqrt{6+\sqrt{6+\sqrt{6+3}}}=\sqrt{12+4}+\sqrt{6+3}=4+3=7\) (1)
Lại có :
\(B=\sqrt{14}+\sqrt{11}\Rightarrow B^2=25+2\sqrt{14.11}=25+2\sqrt{154}>25+2\sqrt{144}=25+2.12=49=7^2\)
Mà B > 0
\(\Rightarrow B>7\) (2)
Từ (1),(2) suy ra A<B
ta xét hiệu A - B= \(\left(\sqrt{10}+\sqrt{13}\right)-\left(\sqrt{11}+\sqrt{12}\right)\) = \(\left(\sqrt{13}-\sqrt{12}\right)-\left(\sqrt{11}-\sqrt{10}\right)\)
\(\le\sqrt{13-12}-\sqrt{11-10}=1-1=0\)
a)
Có: \(2>1>0\)
\(\Rightarrow\sqrt{2}>1\Rightarrow1+\sqrt{2}>1+1\\ \Leftrightarrow1+\sqrt{2}>2\)
b) Có: \(0< \sqrt{3}< 3\)
\(\Rightarrow3+1>\sqrt{3}+1\\ \Rightarrow4>\sqrt{3}+1\)
c) Có: \(0< \sqrt{11}< \sqrt{25}\left(0< 11< 25\right)\)
\(\Rightarrow\sqrt{11}< 5\\ \Rightarrow-2\sqrt{11}>-2.5=-10\left(-2< 0\right)\)
d) Có: \(0< \sqrt{11}< \sqrt{16}=4\left(do.0< 11< 16\right)\)
\(\Rightarrow3\sqrt{11}< 3.4\\ \Leftrightarrow3\sqrt{11}< 12\)
a: 2=1+1<1+căn 2
b: 4=1+3>1+căn 3
c: -2căn 11=-căn 44
-10=-căn 100
mà 44<100
nên -2 căn 11>-10
d: 12=3*4=3*căn 16>3*căn 11
a) Ta có : \(\left(\sqrt{11}+\sqrt{13}\right)^2=11+2\sqrt{11.13}+13=24+2\sqrt{143}\)
\(\left(2.\sqrt{12}\right)^2=4.12=24+2.\sqrt{144}\)
mà \(\sqrt{144}>\sqrt{143}\Rightarrow24+2\sqrt{144}>24+2\sqrt{143}\Rightarrow\left(2.\sqrt{12}\right)^2>\left(\sqrt{11}+\sqrt{13}\right)^2\)
\(2.\sqrt{12}>\sqrt{11}+\sqrt{13}\)
b) Ta có : \(\left(\sqrt{69}-\sqrt{68}\right)-\left(\sqrt{68}-\sqrt{69}\right)\)
\(\Leftrightarrow\sqrt{69}+\sqrt{67}-2\sqrt{68}\)
Từ kq câu a \(\Rightarrow\sqrt{69}+\sqrt{67}< 2\sqrt{68}\)
\(\Rightarrow\sqrt{69}+\sqrt{67}-2\sqrt{68}< 0\)
\(\Rightarrow\left(\sqrt{69}-\sqrt{68}\right)-\left(\sqrt{68}-\sqrt{67}\right)< 0\)
\(\Rightarrow\sqrt{69}-\sqrt{68}< \sqrt{68}-\sqrt{67}\)
\(A=\dfrac{2}{\sqrt{17}+\sqrt{15}}\) ; \(B=\dfrac{2}{\sqrt{15}+\sqrt{13}}\)
Mà \(\sqrt{17}+\sqrt{15}>\sqrt{15}+\sqrt{13}>0\)
\(\Rightarrow\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{15}+\sqrt{13}}\)
\(\Rightarrow A< B\)
\(A=\sqrt{17}-\sqrt{15}=\dfrac{2}{\sqrt{17}+\sqrt{15}}\)
\(B=\sqrt{15}-\sqrt{13}=\dfrac{2}{\sqrt{13}+\sqrt{15}}\)
mà \(\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{13}+\sqrt{15}}\)
nên A<B
a) \(\left(\sqrt{11}+\sqrt{14}\right)^2=25+\sqrt{154}\)
\(\left(2\sqrt{12}\right)^2=24+\sqrt{144}\)
Vậy \(2\sqrt{12}< \sqrt{11}+\sqrt{14}\)
b) \(\left(\sqrt{a+1}+\sqrt{a+3}\right)^2=2a+4+\sqrt{\left(a+1\right)\left(a+3\right)}\)
\(\left(2\sqrt{a+2}\right)^2=2a+4+\sqrt{\left(a+2\right)\left(a+2\right)}\)
Vậy \(\sqrt{a+1}+\sqrt{a+3}< 2\sqrt{a+2}\)
\(\frac{1+\sqrt{3}}{\sqrt{3}-1}=\frac{\left(1+\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=2+\sqrt{3}\)
\(\frac{2}{\sqrt{2}-1}=\frac{2\sqrt{2}+2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=2\sqrt{2}+2=\sqrt{8}+2\)
\(\Rightarrow\frac{2}{\sqrt{2}-1}>\frac{1+\sqrt{3}}{\sqrt{3}-1}\)
\(A=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)
\(B=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)
mà \(\sqrt{12}+\sqrt{11}< \sqrt{14}+\sqrt{13}\)
nên A>B