K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

Trong 3 số liên tiếp có 1 số chẵn mà 2 số còn lại là lẻ => Số ở giữa chẵn

Trong 3 số liên tiếp có 1 số chia hết cho 3 mà 2 số kia lại là số nguyên tố => số ở giữa chia hết cho 3 

=> số đó chia hết cho 6

7 tháng 11 2021

\(252=2^2.3^2.7\)

48 nam 72 nữ chia được nhiều nhất 24 nhóm

câu c sai

7 tháng 11 2021

252=22.32.7252=22.32.7

48 nam 72 nữ chia được nhiều nhất 24 nhóm

câu c sai

12 tháng 1 2016

 BAI NAY QUA DE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

24 tháng 3 2017

Vì a và b là 2 số nguyên tố lẻ liên tiếp và b > a nên :

=> a + 2 = b

=> ( a + b ) : 2

= ( a + a + 2 ) : 2

= ( a x 2 + 2 ) : 2

= a x 2 : 2 + 2 : 2

= a + 1

Mà a là số lẻ nên a + 1 là số chẵn 

Vậy ( a + b ) : 2 là hợp số            ( đpcm )

24 tháng 3 2017

chưa đúng đâu

26 tháng 8 2015

1)vì p là số nguyên tố lớn hơn 3=> p không chia hết cho 3

=>4p không chia hết cho 3

vì p lớn hơn 3  => 2p+1 lớn hơn 3   =>2p+1 không chia hết cho 3

=>2.(2p+1) không chia hết cho 3   =>4p+2 không chia hết cho 3

vì 4p;4p+1;4p+2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chia hết cho 3

mà 4p và 4p+2 không chia hết cho 3=> 4p+1 chia hết cho 3

=>4p+1 là hợp số.