Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số a=5,123 là một số thập phân hữu hạn nên a là số hữu tỉ
b) Số b = 6,15555... = 6,1(5) là một số thập phân vô hạn tuần hoàn nên b là số hữu tỉ
c) Người ta chứng minh được \(\pi= 3,14159265...\) là một số thập phân vô hạn không tuần hoàn. Vậy \(\pi\) là số vô tỉ
d) Cho biết số c=2,23606... là một số thập phân vô hạn không tuần hoàn. Vậy c là số vô tỉ
Lời giải:
$A=0,1+0,0(2453)=\frac{1}{10}+\frac{2453}{99990}=\frac{566}{4545}$ (đây đã là dạng tối giản)
Vậy số nguyên k nguyên dương nhỏ nhất để $kA$ nguyên là $4545$
Một phân số có mẫu dương mà mẫu có ước nguyên tố khác gì và gì thì phân số đó được viết dưới dạng số thập phân hữu hạn hả bạn
a)
b) 7 n 2 + 21 n 56 n = 7 n ( n + 3 ) 7 n .8 = n + 3 8
Vậy phân số 7 n 2 + 21 n 56 n viết được dưới dạng số thập phân hữu hạn vì 7 n 2 + 21 n 56 n = 7 n ( n + 3 ) 7 n .8 = n + 3 8 có mẫu là 8 = 2 3 không có ước nguyên tố khác 2 và 5 (với n là số nguyên)
Phân số hữu hạn là : \(\frac{5}{8}=0.625,-\frac{3}{20}=-0.15\)\(\frac{14}{35}=\frac{2}{5}=0.4\) vì mẫu tối giản của chúng là tích của các lũy thừa 2 và 5.
Phân số còn lại là vô hạn tuần hoàn vì mẫu của chúng không phân tích được thành tích của các lúy thừa 2 và 5.
Số \(\frac{4}{11}=0.\left(36\right),\frac{15}{22}=0.68\left(18\right),-\frac{7}{12}=-0.58\left(3\right)\)