K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

Chọn D.

Ta có 

Vậy để  thì . Vì a và b là các số nguyên dương nên suy ra a = 5k, b = 3k với k nguyên dương. Do đó ab = 15k2.

+ 15k2 = 15 k2 = 1 k = 1 ab = 15.

+ 15k2 = 60 k2 = 4 k = 2 ab = 60.

+ 15k2 = 240 k2 = 16 k = 4 ab = 240.

Vậy cả ba đáp án đều đúng.

22 tháng 5 2017

Chọn C.

Đặt t = x - 8. Suy ra x = t + 8.  và

Do đó . Áp dụng ví dụ 13. Ta có:

Vậy .

Do đó .

Vậy a =112; b = 27 và a + b = 139.

 

 

x^3-x^2(m+3)+x(3m+2)-2m=0

=>(x-1)(x^2-(m+2)x+2m)=0

=>x=1 hoặc x^2-(m+2)x+2m=0

Để PT có 3 nghiệm thì (m+2)^2-4*2m>0 và 1^2-(m+2)+2m<>0

=>m<>1 và m<>2

=>x2=(m+2-m+2)/2=2 và x3=(m+2+m-2)/2=m

Để tạo thành cấp sô nhân thì

x1<x2<m hoặc  m<x1<x2  hoặc x1<m<x2

=>m*1=2^2 hoặc 2m=1 hoặc m^2=2

=>m=4 hoặc m=1/2 hoặc m=căn 2

15 tháng 4 2019

22 tháng 10 2017

Đáp án đúng : C

12 tháng 4 2019

NV
21 tháng 3 2023

a.

\(u_5=18\Rightarrow u_1+4d=18\) (1)

\(4S_n=S_{2n}\Rightarrow\dfrac{4n\left(2u_1+\left(n-1\right)d\right)}{2}=\dfrac{2n\left(2u_1+\left(2n-1\right)d\right)}{2}\)

\(\Rightarrow4u_1+2\left(n-1\right)d=2u_1+\left(2n-1\right)d\)

\(\Rightarrow2u_1-d=0\Rightarrow d=2u_1\) (2)

Thế (2) vào (1):

\(\Rightarrow9u_1=18\Rightarrow u_1=2\Rightarrow d=4\)

b.

Do a;b;c là 3 số hạng liên tiếp của 1 CSC công sai 2 nên: \(\left\{{}\begin{matrix}b=a+2\\c=a+4\end{matrix}\right.\)

Khi tăng số thứ nhất thêm 1, số thứ 2 thêm 1 và số thứ 3 thêm 3 được 1 cấp số nhân nên:

\(\left(a+1\right)\left(c+3\right)=\left(b+1\right)^2\)

\(\Rightarrow\left(a+1\right)\left(a+7\right)=\left(a+3\right)^2\)

\(\Rightarrow a^2+8a+7=a^2+6a+9\)

\(\Rightarrow a=1\Rightarrow b=3\Rightarrow c=5\)

4 tháng 3 2017

Ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 3)

Chọn C.

11 tháng 11 2016

có 18 số cần tìm.

gọi số cần tìm là abc

xét a=1, c có 3 cách chọn(0,2,8), b có 4 cách => có 3*4=12

xét abc<270, a=2, nếu c=8 thì b có 3 cách, nếu c=0 thì b có 2 cách => có 1*1*3+1*1*2=6

xét 270 đến 278, ko có số thảo mãn

8 tháng 12 2021

Áp dụng BĐT \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\):

\(y^2=\left(\sqrt{sinx}+\sqrt{1-sinx}\right)^2\le sinx+1-sinx=1\)

\(\Rightarrow-1\le y\le1\)

\(\Rightarrow M^4-m^4=0\)