K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2021

Phương trình đường thẳng AB có dạng \(y=ax+b\)

Từ giả thiết suy ra \(\left\{{}\begin{matrix}a+b=-1\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\)

\(\Rightarrow y=\dfrac{1}{2}x-\dfrac{3}{2}\)

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

9 tháng 1 2021

Δ có vecto pháp tuyến là \(\overrightarrow{n}\) = (1; - 2) và vectochỉ phương

là \(\overrightarrow{u}\) = (2; 1)

a, d ⊥ AB nên d nhận \(\overrightarrow{AB}=\left(2;1\right)\) làm vecto pháp tuyến

Phương trình đường thẳng d: 2(x - 1) + (y + 1) = 0

hay 2x + y - 1 = 0

b, Trung điểm M của AB : \(M\left(2;-\dfrac{1}{2}\right)\)

d ⊥ AB nên d nhận \(\overrightarrow{AB}=\left(2;1\right)\) làm vecto pháp tuyến

Phương trình đường thẳng d: 2(x - 2) + \(\left(y+\dfrac{1}{2}\right)\) = 0

hay 2x + y \(-\dfrac{7}{2}\) = 0

c, d // Δ nên vecto pháp tuyến của Δ là vecto pháp tuyến của d ⇒ d nhận \(\overrightarrow{n}\) = (1; - 2) làm vecto pháp tuyến

d đi qua B (3; 0)

Phương trình d: 1(x-3) - 2y = 0 hay x - 2y - 3 = 0

d, d đi qua A và B thì d nhận \(\overrightarrow{AB}=\left(2;1\right)\) làm vecto chỉ phương ⇒ d nhận (1; -2) làm vecto pháp tuyến

phương trình d: x - 2y - 3 = 0

8 tháng 5 2019

Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)

Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)

Vậy đường thẳng Δ có dạng: x+y-3=0

Vì đường tròn có tâm I thuộc d nên I(a;-a)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vì đường tròn đi qua A, B nên I A 2  = I B 2  ⇒ (3 - a ) 2  + a 2  = a 2  + (2 + a ) 2  ⇔ (3 - a ) 2  = (2 + a ) 2

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy phương trình đường tròn có dạng:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Ta có: 

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Giả sử elip (E) có dạng:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vì (E) đi qua B nên:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

Vậy phương trình chính tắc của elip (E) là:

Đề thi Học kì 2 Toán 10 có đáp án (Đề 2)

6 tháng 3 2020

mỗi bài, mk làm một phần ví dụ cho cậu nhé

nó đối xứng với nhau qua pt đường thẳng đenta,

trường hợp (d) ko cắt (đen ta) hay (d) cắt (đen ta) thì đều làm theo phương pháp sau 

lấy 2 điểm bất kì thuộc (d) thì ta có như sau: A(0:1)  là điểm thuộc đường thẳng (d)

lấy A' đối xứng với A qua (đen ta) 

liên hệ tính chất đối xứng qua đường thẳng thì hiểu là AA' vuông góc (đen ta)

đồng thời giao điểm của  AA' với (đen ta) là trung điểm của  AA' 

dễ dàng tìm đc giao điểm của (đen ta) với (d) là K(-2/5;1/5)

từ pt (đenta) thì dễ dàng =) vecto pháp tuyến của (đenta) =) (3;-4) 

vì AA' vuông góc với (đenta) nên =) vectơ pháp tuyến của AA' là (4;-3)

áp véctơ pháp tuyến của AA' vào phương trình tổng quát đc: 4(x-0)-3(y-1)=0 (=) 4x-3y+3=0

gọi I là giao điểm của AA' và (đenta) =) I(-6/7;-1/7)

mà I là trung điểm của AA' 

chắc chắn cậu sẽ dễ dàng suy ra điểm A'

mà K và A' thuộc (d') nên dễ dàng =) phương trình của (d')

25 tháng 7 2021

\(\Delta\) đi qua M(1,-1) có hệ số góc k

=> \(\Delta:y=k\left(x-1\right)-1=kx-k-1\)

\(\Delta\) song song d: \(y=\dfrac{1}{2}x+\dfrac{1}{2}\) \(=>k=\dfrac{1}{2}\)

\(\Delta:y=\dfrac{1}{2}x-\dfrac{3}{2}\)

NV
7 tháng 4 2022

a.

\(\overrightarrow{AB}=\left(3;-4\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt

Phương trình AB:

\(4\left(x-2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-23=0\)b.

Do d vuông góc delta nên d nhận (4;-3) là 1 vtpt

Phương trình d có dạng: \(4x-3y+c=0\)

\(d\left(B;d\right)=\dfrac{\left|4.5-3.1+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{1}{5}\)

\(\Rightarrow\left|c+17\right|=1\Rightarrow\left[{}\begin{matrix}c=-16\\c=-18\end{matrix}\right.\)

Có 2 đường thẳng d thỏa mãn: \(\left[{}\begin{matrix}4x-3y-16=0\\4x-3y-18=0\end{matrix}\right.\)

5:

Gọi (d): y=ax+b là phương trình cần tìm

Theo đề, ta có hệ:
3a+b=-1 và 2a+b=3

=>a=-4 và b=11

=>y=-4x+11

4:

vecto BC=(1;-1)

=>AH có VTPT là (1;-1)

Phương trình AH là:

1(x-1)+(-1)(y+3)=0

=>x-1-y-3=0

=>x-y-4=0

10 tháng 5 2023
13 tháng 12 2020

\(y=ax+b\left(d\right);y=-\dfrac{1}{2}x+\dfrac{1}{2}\left(d'\right)\)

\(\left(d\right)\perp\left(d'\right)\Leftrightarrow-\dfrac{1}{2}a=-1\Leftrightarrow a=2\Rightarrow y=2x+b\left(d\right)\)

Lại có \(\left(d\right)\) đi qua \(A\left(-1;2\right)\Rightarrow2=-2+b\Rightarrow b=4\)

\(\Rightarrow y=2x+4\left(d\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 2 2023

Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$

Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$

$M$ là trung điểm của $AB$ nên:

\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)

\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)

Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$

Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$

Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$

$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:

$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$

19 tháng 3

tại sao lại ra 11/3 với 16/3 ạ