Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
\(A=\dfrac{1}{2\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot3}+\dfrac{1}{4\cdot4}+...+\dfrac{1}{50\cdot50}\)
\(A=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{50}-\dfrac{1}{50}\)
\(A=1\)
Vậy A=1
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A=1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=1+B\)( Gọi biểu thức trong ngoặc là B)
Ta xét B
B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
B<\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
B<\(1-\frac{1}{2}+\frac{1}{2}-\frac{2}{3}+...+\frac{1}{49}-\frac{1}{50}\)
B<\(1-\frac{1}{50}<1\)
Vậy B<1
=>A=1+B < 1+1=2
Vậy A<2
đặt B=1/1.2+1/2.3+...+1/49.50
ta có:
A=1/1^2+1/2^2+1/3^2+1/4^2+....+1/50^2<B=1/1.2+1/2.3+...+1/49.50 (1)
B=1/1.2+1/2.3+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50<1 (2)
từ (1) va (2)=>A<B<2
=>A<2
Ta có: A = 1/1 + 1/2 + ... + 1/50
2A = 2 + 1 + ... +1/25
2A - A = (2 + 1 + ... +1/25) - (1 + 1/2 + ... + 1/50)
A = 2 - 1/50
Vì 1/50 > 0 nên 2 - 1/50 < 2
Vậy A < 2 (đpcm)
\(\Rightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.......+\frac{1}{49.50}\)
\(\Rightarrow A<1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow A<1+\left(1-\frac{1}{50}\right)\)
\(\Rightarrow A<1+\frac{49}{50}\)
\(\Rightarrow A<\frac{99}{50}\)
Vì \(\frac{99}{50}<2=\frac{100}{50}\Rightarrow A<2\) ĐPCM
Ta có:
\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};......;\frac{1}{50^2}<\frac{1}{49.50}\)
Do đó \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}<1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
\(\Rightarrow A<1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}<2\)
=>A<2(đpcm)