K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5

Ta có: 𝐶=1101+1102+1103+...+1200

=(1101+1102+...+1120)+(1121+1122+1123+...+1150)+(1151+1152+1153+...+1180)+(1181+1182+1183+...+1200)

⇔𝐶>20⋅1120+30⋅1150+30⋅1180+20⋅1200

⇔𝐶>16+15+16+110=1930=76120

⇔𝐶>75120=58

hay 𝐶>58(đpcm)

 TỰ thay C=a nhA

8 tháng 6 2015

Thanks bạn Đinh Tuấn Việt nhiều nah!!!!

19 tháng 12 2023

A = -1 - 2 - 3 - ... - 100

= -(1 + 2 + 3 + ... + 100)

= -100.101 : 2

= -5050

--------

B = -2 - 4 - 6 - ... - 100

= -(2 + 4 + 6 + ... + 100)

Số số hạng của B:

(100 - 2) : 2 + 1 = 50 (số)

B = -(100 + 2) . 50 : 2 = -2550

--------

C = -6 - 9 - 12 - ... - 99

= -(6 + 9 + 12 + ... + 99)

Số số hạng của C:

(99 - 6) : 3 + 1 = 32 (số)

C = -(99 + 6) . 32 : 2 = -1680

--------

D = 4 - 8 + 12 - 16 + ... + 196 - 200

Số số hạng của D:

(200 - 4) : 4 + 1 = 50 (số)

D = (4 - 8) + (12 - 16) + ... + (196 - 200)

= -4 + (-4) + ... + (-4) (25 số -4)

= -4.25

= -100

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)

Bài 2: 

a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ

mà số nguyên tố chẵn duy nhất là 2

nên số lẻ còn lại là 599(thỏa ĐK)

Vậy: Hai số nguyên tố cần tìm là 2 và 599

4 tháng 4 2021

b,Gọi ƯCLN(21n+4,14n+3)=d

21n+4⋮d ⇒42n+8⋮d

14n+3⋮d ⇒42n+9⋮d

(42n+9)-(42n+8)⋮d

1⋮d ⇒ƯCLN(21n+4,14n+3)=1

Vậy phân số 21n+4/14n+3 là phân số tối giản