K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chữa đề \(\frac{2017}{4038}< A< \frac{2017}{2018}\)

Ta có: \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)

\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(\Leftrightarrow A< 1-\frac{1}{2018}=\frac{2017}{2018}\)(1)

Lại có: \(A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{2019}=\frac{2017}{4038}\)(2) 

Từ (1) và (2) => đpcm

31 tháng 3 2018

\(B=\sqrt{1+2017^2+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

Đặt B = 2017 => B + 1 = 2018

Khi B bằng: 

\(B=\sqrt{1+B^2+\frac{B}{\left(B+1\right)^2}}+\frac{B}{B+1}\)

\(B=\sqrt{\frac{\left(B+1\right)^2+B^2\left(B+1\right)^2+B^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)

\(B=\sqrt{\frac{B^2\left(B+1\right)^2+2B\left(B+1\right)^2+B^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)

\(B=\sqrt{\frac{\left[B\left(B+1\right)+1\right]^2}{\left(B+1\right)^2}}+\frac{B}{B+1}\)

\(B=\frac{B^2+B+1}{B+1}+\frac{B}{B+1}\left(\text{vi}:a>0\right)\)

\(B=\frac{B^2+2B+1}{B+1}\)

\(B=\frac{\left(B+1\right)^2}{B+1}\)

\(B=B+1\left(\text{vi}:a>0\Rightarrow B+1>0\right)\)

\(B=2017+1\left(\text{vi}:B=2017\right)\)

\(\Rightarrow B=2018\)

12 tháng 11 2017

Ta có: \(A=a_1+a_2+a_2+...+a_{2017}=2019^{2018}=3^{2018}.673^{2018}\)

\(\Rightarrow A⋮3\). (1)

Lai có \(B-A=(a_1^3+a_2^3+...+a_{2017}^3)-\left(a_1+a_2+...+a_{2017}\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_{2017}^3-a_{2017}\right)\)

Mat khac \(a_i^3-a_i=\left(a_i-1\right).a_i.\left(a_i+1\right)⋮3\) \(\left(1\le i\le2017\right)\)

Vậy từ đó ta suy ra \(B-A⋮3\) (2)

\(\left(1\right);\left(2\right)\Rightarrow B⋮3\)

một số mũ 2 đều lớn hơn hoặc 0

mà cả 3 số cộng lại bằng 1 

=> có 2 số bằng 0 và 1 số bằng 1 mới cho kết quả bằng 1

mà số 0 mũ b.n cx bằng 0, số 1 mũ b.n cx bằng 1

=> a2017+b2018+c2019=1

mk ko chắc lắm, nghĩ sao viết vậy thôi

15 tháng 4 2019

Tách x2018 + x2017 =x2016.(x2+x) 

Rồi tự làm típ 

8 tháng 10 2019

noi nhu may ai ma cha noi duoc

7 tháng 3 2018

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}\)

\(=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(\frac{\sqrt{n}}{\sqrt{n+1}}+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Từ đây ta có

\(VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2017}}-\frac{1}{\sqrt{2018}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2018}}\right)< 2\)

8 tháng 3 2018

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}\)

\(\Leftrightarrow\sqrt{n}\left(\frac{1}{n}-\frac{1}{n1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\). Mà:

\(\left(\frac{\sqrt{n}}{\sqrt{n+1}}+1\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) 

 Từ đó, ta có:

\(VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{2017}}-\frac{1}{\sqrt{2018}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2018}}\right)< 2\)  (ĐPCM)