Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n(n + 1)(n + 2) = n (n + 1)(n + 2). 4= n(n + 1)(n + 2).
= n(n + 1)(n + 2)(n + 3) - n(n + 1)(n + 2)(n - 1)
=> 4S =1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + . . . + n( + 1)(n + 2)(n + 3)
- n(n + 1)(n + 2)(n - 1) = n(n + 1)(n + 2)(n + 3)
=> 4S + 1 = n(n + 1)(n + 2)(n + 3) + 1
n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1
= (n^2+3n) (n^2+3n+2) (*)
Đặt n^2 +3n=t thì (*) = t(t + 2) + 1 = t^2 + 2t + 1 = (t + 1)^2
= (n2 + 3n + 1)^2
Vì n N nên n^2 + 3n + 1 N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương hau 4S +1 là scp
A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
suy ra 4A=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)((n+3)-(n-1))
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)
=n(n+1)(n+2)(n+3)
4A+1=n(n+1)(n+2)(n+3)+1=n^4+6.n^3+11.n^2+6n+1=(n2+3n+1)^2
Vậy Chứng minh rằng: 4A + 1 là một số chính phương.
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 49.50.51
4S = 1.2.3.4 +2.3.4.4+3.4.5.4+....+49.50.51.4
=2.3.4.(1+4)+3.4.5.4+....+49.50.51.4
=3.4.5.(2+4)+......+49.50.51.4
=.....
=49.50.51.52
= 2.2.2.3.5.5.7.7.13.17
= 6497400
Mà V649740 = 2548.999804
=> 4S + n = 2549^2
=> 6497400 + n = 6497401
=> n = 6497401 - 6497400
=> n = 1
Vạy: n = 1 (thấy đúng thì !)
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 49.50.51
4S = 1.2.3.4 +2.3.4.4+3.4.5.4+....+49.50.51.4
=2.3.4.(1+4)+3.4.5.4+....+49.50.51.4
=3.4.5.(2+4)+......+49.50.51.4
=.....
=49.50.51.52
= 2.2.2.3.5.5.7.7.13.17
Số chính phương bé nhất là: 4S x 2.3.13.17
=> n nhỏ nhất= 49.50.51.52.(2.3.13.17-1)
TA CÓ:4S LÀ 1.2.3.4+2.3.4.4+....+49.50.51
CÓ:1.2.3.4+2.3.4.(5-1)+....+49.50.51.(52-48)
LẠI CÓ:1.2.3.4+2.3.4.5-1.2.3.4+....+49.50.51.52-48.49.50.51
SUY RA:4S LÀ 49.50.51.52 VÀ LÀ 6497400
TA CÓ TIẾP:6497400+n là số chính phương
PHẦN SAU TỰ LÀM NHƯ "Tran hieu" nhé
A=1.2.3+2.3.4+...+n.(n+1).(n+2)
=>4A=1.2.3.4+2.3.4.4+n(n+1)(n+2).4
=1.2.3.(4-0)+2.3.4.(5-1)+...+n.(n+1)(n+2)[(n+3)-(n-1)]
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1)-n.(n+1).(n+2).(n+3)
=n.(n+1)(n+2)(n+3)
=>4A+1=n(n+1)(n+2)(n+3)+1
=n.(n+3).(n+1)(n+2)+1
=(n2+3n).[n.(n+2)+1.(n+2)]+1
=(n2+3n).(n2+2n+n+2)+1
=(n2+3n).(n2+3n+2)+1
Đặt y=n2+3n
=>4A+1=y.(y+2)+1
=y2+2y+1
=y2+y+y+1
=y.(y+1)+(y+1)
=(y+1)(y+1)
=(y+1)2
Vậy 4A+1 là số chính phương