Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi \(k\in N\)ta có \(a_k=\frac{2k+1}{\left(k^2+k\right)^2}=\frac{k^2+2k+1-k^2}{k^2\left(k+1\right)^2}=\frac{1}{k^2}-\frac{1}{\left(k+1\right)^2}\)
Từ đó suy ra \(S=a_1+a_2+a_3+...+a_{2018}\)= \(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{2017^2}-\frac{1}{2018^2}\)
= \(1-\frac{1}{2018^2}\)= \(\frac{2017\cdot2019}{2018^2}\)
Tớ nêu ý kiến =) bài chưa qua kiểm định nhé ^^
Lấy tổng lập phương 2018 số đó trừ đi P sẽ đc 1 hiệu chia hết cho 6
VD nhé : a1^3 - a1 = a1.(a1^2-1) = a1.(a1-1).(a1+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
Mấy cái còn lại cx tương tự như thế thì hiệu nhận đc đúng là chia hết cho 6 đúng ko?
Thế thì P chia 6 dư 5 rồi =D
ae ơi đề bài lại như này nhé chứng minh a 1 + a2 +....+a99 <1
\(a_k=\frac{2k+1}{k^2\left(k+1\right)^2}=\frac{k^2+2k+1-k^2}{k^2\left(k+1\right)^2}=\frac{\left(k+1\right)^2}{k^2\left(k+1\right)^2}-\frac{k^2}{k^2\left(k+1\right)^2}=\frac{1}{k^2}-\frac{1}{\left(k+1\right)^2}\)
\(S=\frac{1}{1^2}-\frac{1}{\left(1+1\right)^2}+\frac{1}{2^2}-\frac{1}{\left(2+1\right)^2}+\frac{1}{3^2}-\frac{1}{\left(3+1\right)^2}+...+\frac{1}{99^2}-\frac{1}{\left(99+1\right)^2}\)
\(S=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=1-\frac{1}{100^2}< 1\) ( đpcm )
...