Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 20 + 21 + 22 + ... + 2100
A = (20 + 21) + (22 + 23) + ...+ ( 299 + 2100)
A = (20 + 21) + 22 . (20 + 21) + ... + 299 . ( 20 + 21)
A = (20 + 21) . (20 + 22 + ... + 299)
A = 3 . (20 + 22 + ... + 299)
Vì 3 chia hết cho 3 nên 3 . (20 + 22 + ... + 299) chia hết cho 3.
=> A chia hết cho 3.
Ta có: A = 2 + 22 + 23 + 24 + ... + 299 + 2100
A = (2 + 22) + (23 + 24) + ... + (299 + 2100)
A = 6 + 22(2 + 22) + .... + 298(2 + 22)
A = 6 + 22.6 + ... + 298.6
A = 6.(1 + 22 + ... + 298) \(⋮\)6
a) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)
\(\Rightarrow A=6+...+2^{118}.6\)
\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)
b) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)
\(\Rightarrow A=14+...+2^{117}.14\)
\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)
`#3107.101107`
a,
\(C=2+2^3+2^5+...+2^{23}\)
\(=\left(2+2^3+2^5\right)+\left(2^5+2^7+2^9\right)+...+\left(2^{19}+2^{21}+2^{23}\right)\)
\(=2\left(1+2^2+2^4\right)+2^5\cdot\left(1+2^2+2^4\right)+...+2^{19}\cdot\left(1+2^2+2^4\right)\)
\(=\left(1+2^2+2^4\right)\cdot\left(2+2^5+...+2^{19}\right)\)
\(=21\cdot\left(2+2^5+...+2^{19}\right)\)
Vì \(21\text{ }⋮\text{ }21\)
\(\Rightarrow21\left(2+2^5+...+2^{19}\right)\text{ }⋮\text{ }21\)
Vậy, \(C\text{ }⋮\text{ }21\)
b,
\(C=2+2^3+2^5+...+2^{23}\)
\(=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{21}+2^{23}\right)\)
\(=\left(2+2^3\right)+2^4\cdot\left(2+2^3\right)+...+2^{20}\cdot\left(2+2^3\right)\)
\(=\left(2+2^3\right)\cdot\left(1+2^4+...+2^{20}\right)\)
\(=10\cdot\left(1+2^4+...+2^{20}\right)\)
Vì \(10\text{ }⋮\text{ }10\)
\(\Rightarrow10\cdot\left(1+2^4+...+2^{20}\right)\text{ }⋮\text{ }10\)
Vậy, \(C\text{ }⋮\text{ }10.\)
a) c = 2 + 2³ + 2⁵ + ... + 2¹⁹ + 2²¹ + 2²³
= (2 + 2³ + 2⁵) + (2⁷ + 2⁹ + 2¹¹) + ... + (2¹⁹ + 2²¹ + 2²³)
= 2.(1 + 2² + 2⁴) + 2⁷.(1 + 2² + 2⁴) + ... + 2¹⁹.(1 + 2² + 2⁴)
= 2.21 + 2⁷.21 + ... + 2¹⁹.21
= 21.(2 + 2⁷ + ... + 2¹⁹) ⋮ 21
Vậy c ⋮ 21
b) c = 2 + 2³ + 2⁵ + 2⁷ + ... + 2²¹ + 2²³
= (2 + 2³) + (2⁵ + 2⁷) + ... + (2²¹ + 2²³)
= 10 + 2⁴.(2 + 2³) + ... + 2²⁰.(2 + 2³)
= 10 + 2⁴.10 + ... + 2²⁰.10
= 10.(1 + 2⁴ + ... + 2²⁰) ⋮ 10
Vậy c ⋮ 10
\(a=2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{99}\right)⋮3\).
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
\(a,A=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)...+\left(2^{99}+2^{100}\right)\)
\(=6+2^2\cdot\left(2+2^2\right)+2^4\cdot\left(2+2^2\right)...+2^{98}\cdot\left(2+2^2\right)\)
\(=6+2^2\cdot6+2^4\cdot6...+2^{98}\cdot6\)
\(=6\cdot\left(1+2^2+2^4+...+2^{98}\right)\)
Vì \(6\cdot\left(1+2^2+2^4+...+2^{98}\right)⋮6\)
nên \(A⋮6\)
\(b,A=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^3+2^5\right)+...+\left(2^{97}+2^{99}\right)+\left(2^{98}+2^{100}\right)\)
\(=10+2\cdot\left(2+2^3\right)+2^2\cdot\left(2+2^3\right)+...+2^{96}\cdot\left(2+2^3\right)+2^{97}\cdot\left(2+2^3\right)\)
\(=10+2\cdot10+2^2\cdot10+...+2^{96}\cdot10+2^{97}\cdot10\)
\(=10\cdot\left(1+2+2^2+...+2^{96}+2^{97}\right)\)
Vì \(10\cdot\left(1+2+2^2+...+2^{96}+2^{97}\right)⋮10\)
nên \(A⋮10\)
#\(Toru\)
mình không biết làm