Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(a^2,b^2,c^2\ge0\)
mà \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\Rightarrow a+b+c=0\)
Điều này trái với GT a+b+c=6 \(\Rightarrow\)Đề sai
còn a+b+c=0 và a^2+b^2+c^2=6 thì bài này có nhiều trên mạng lắm search ik
a) \(a^2+b^2=a^2+2ab+b^2-2ab\)
\(=\left(a+b\right)^2-2ab=5^2-2.6=25-12=13\)
a) Vì \(a+b=5\Rightarrow\left(a+b\right)^2=25\)
\(\Rightarrow a^2+2ab+b^2=25\)
Mà ab= 6
\(\Rightarrow a^2+18+b^2=25\)
\(\Rightarrow a^2+b^2=7\)
Theo đề có \(a+b+c=0 \Rightarrow (a+b+c)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow ab+bc+ca=\frac{0-2}{2} = -1\) (Vì \(a^2+b^2+c^2=2\))
\(\Rightarrow (ab+bc+ca)^2=1 \)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2bc^2a+2ca^2b=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2 = 1\) (vì \(a+b+c=0\))
Mặt khác từ `a^2+b^2+c^2=2`
`\Rightarrow(a^2+b^2+c^2)^2=2^2`
`\Rightarrowa^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)=4`
`\Rightarrowa^4+b^4+c^4+2.1=4`
`\Rightarrowa^4+b^4+c^4=4-2=2`
Ta có: a2 + b2 = (a + b)2 - 2ab = 62 - 2.4 = 28
a4 + b4 = (a2 + b2)2 - 2a2b2 = 282 - 2.42 = 752
Đặt A=a4+b4+c4
ta có:
a+b+c=0
=>(a+b+c)2=0
=> a2+b2+c2+2ab+2bc+2ca=0
=> (a2+b2+c2)+2(ab+bc+ca)=0
=>2+2(ab+bc+ca)=0
=>2(ab+bc+ca)=-2
=> ab+bc+ca=-1
Ta có:
ab+bc+ca=-1
=> (ab+bc+ca)2=1
=>a2b2+b2c2+c2a2+2ab2c+2bc2a+2ca2b=1
=>(a2b2+b2c2+c2a2) + 2abc(b+c+a)=1
=>(a2b2+b2c2+c2a2) =1
Ta có:
A=a4+b4+c4
A=(a4+b4+c4+2a2b2+2b2c2+2c2a2) - (2a2b2+2b2c2+2c2a2)
A=(a2+b2+c2)2 - 2(a2b2+b2c2+c2a2)
A= 22- 2.1
A=4-2=2
Vậy a4+b4+c4=2