K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2015

a2+b2+c2+3=2a+2b+2c

=>a2-2a+1+b2-2b+1+c2-2c+1=0  (chuyển vế và tách 3=1+1+1)

<=>(a-1)2+(b-1)2+(c-1)2=0  (1)

vì (a-1)2>=0  

(b-1)2  >=0

(c-1)2>=0

do đó (a-1)2+(b-1)2+(c-1)2>=0 với mọi a,b,c  (2)

từ (1) và (2)=>a-1=b-1=c-1=0

=>a=b=c=1  (dpcm)

30 tháng 7 2017

giải giúp mik vs cần gấp lắm nha sáng mai mình phải nộp bài rồi ^_^

xin loi nha toi hom nay minh moi biet nhung minh cung khong biet bai lop 8 ,nen minh khong biet xin loi nha

10 tháng 5 2017

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}.\frac{b^2}{c^2}}=2\frac{a}{c}\\ \frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\frac{c}{b}\\ \frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)

\(=>2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\right)\)

=> đpcm

3 tháng 1 2016

Ta có:

\(a^2+b^2=c^2+d^2\)

nên  \(a^2-c^2=d^2-b^2\)

\(\Leftrightarrow\)  \(\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\)  \(\left(1\right)\)

Lại có:   \(a+b=c+d\)   \(\left(2\right)\)

\(\Rightarrow\)  \(a-c=d-b\)

+) Nếu   \(a-c=0\)   \(\Rightarrow\)   \(a=c\)  và   \(d-b=0\)  \(\Rightarrow\)  \(d=b\)  thì  biểu thức  \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\)  

luôn đúng với mọi  \(a;b;c;d\)

+)  Nếu  \(a-c\ne0\)   \(\Rightarrow\)   \(a\ne c\)  và   \(d-b\ne0\)  \(\Rightarrow\)  \(d\ne b\)  thì khi đó biểu thức  \(\left(1\right)\)  trở thành: 

\(a+c=b+d\)  \(\left(3\right)\)

Cộng  \(\left(2\right)\)  và   \(\left(3\right)\)  vế theo vế, ta được:

\(2a+b+c=2d+b+c\)

\(\Rightarrow\)  \(2a=2d\)

\(\Rightarrow\)  \(a=d\)

Từ đây, ta dễ dàng suy ra được   \(b=c\)   (theo  \(\left(2\right);\left(3\right)\)  )  

Vì  \(a=d\)   và   \(b=c\)  nên do đó, biểu thức  \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\) luôn đúng với mọi  \(a;b;c;d\)

Vậy,   ...

22 tháng 10 2021

\(a^2-b^2-c^2+2bc\)

\(=a^2-\left(b-c\right)^2\)

\(=\left(a-b+c\right)\left(a+b-c\right)\)

11 tháng 8 2017

Giúp mình với!

11 tháng 8 2017

b1: ta có: a^2+b^2 >0 ; b^2 +c^2>0 ; c^2 +a^2>0

=> \(a^2+b^2\ge2\sqrt{a^2.b^2}\) (BĐT cau chy)

\(b^2+c^2\ge2\sqrt{b^2.c^2}\) (BĐT cau chy)

\(c^2+a^2\ge2\sqrt{c^2.a^2}\)(BĐT cauchy)

=>\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2.b^2.c^2\)

Dấu '= xảy ra khi a=b=c (đpcm)

11 tháng 1 2020

có sai đề ko bn

\(2.a^2+2.b^2+2c^2-2ab-2bc-2ac=4a^2+4b^2+4c^2-4ab-4bc-4ac\)

\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2=0\right)\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c\left(dpcm\right)}\)