Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải giúp mik vs cần gấp lắm nha sáng mai mình phải nộp bài rồi ^_^
xin loi nha toi hom nay minh moi biet nhung minh cung khong biet bai lop 8 ,nen minh khong biet xin loi nha
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}.\frac{b^2}{c^2}}=2\frac{a}{c}\\ \frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\frac{c}{b}\\ \frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)
\(=>2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\right)\)
=> đpcm
Ta có:
\(a^2+b^2=c^2+d^2\)
nên \(a^2-c^2=d^2-b^2\)
\(\Leftrightarrow\) \(\left(a-c\right)\left(a+c\right)=\left(d-b\right)\left(d+b\right)\) \(\left(1\right)\)
Lại có: \(a+b=c+d\) \(\left(2\right)\)
\(\Rightarrow\) \(a-c=d-b\)
+) Nếu \(a-c=0\) \(\Rightarrow\) \(a=c\) và \(d-b=0\) \(\Rightarrow\) \(d=b\) thì biểu thức \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\)
luôn đúng với mọi \(a;b;c;d\)
+) Nếu \(a-c\ne0\) \(\Rightarrow\) \(a\ne c\) và \(d-b\ne0\) \(\Rightarrow\) \(d\ne b\) thì khi đó biểu thức \(\left(1\right)\) trở thành:
\(a+c=b+d\) \(\left(3\right)\)
Cộng \(\left(2\right)\) và \(\left(3\right)\) vế theo vế, ta được:
\(2a+b+c=2d+b+c\)
\(\Rightarrow\) \(2a=2d\)
\(\Rightarrow\) \(a=d\)
Từ đây, ta dễ dàng suy ra được \(b=c\) (theo \(\left(2\right);\left(3\right)\) )
Vì \(a=d\) và \(b=c\) nên do đó, biểu thức \(a^{2010}+b^{2010}=c^{2010}+d^{2010}\) luôn đúng với mọi \(a;b;c;d\)
Vậy, ...
b1: ta có: a^2+b^2 >0 ; b^2 +c^2>0 ; c^2 +a^2>0
=> \(a^2+b^2\ge2\sqrt{a^2.b^2}\) (BĐT cau chy)
\(b^2+c^2\ge2\sqrt{b^2.c^2}\) (BĐT cau chy)
\(c^2+a^2\ge2\sqrt{c^2.a^2}\)(BĐT cauchy)
=>\(\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8a^2.b^2.c^2\)
Dấu '= xảy ra khi a=b=c (đpcm)
\(2.a^2+2.b^2+2c^2-2ab-2bc-2ac=4a^2+4b^2+4c^2-4ab-4bc-4ac\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2=0\right)\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow}a=b=c\left(dpcm\right)}\)
a2+b2+c2+3=2a+2b+2c
=>a2-2a+1+b2-2b+1+c2-2c+1=0 (chuyển vế và tách 3=1+1+1)
<=>(a-1)2+(b-1)2+(c-1)2=0 (1)
vì (a-1)2>=0
(b-1)2 >=0
(c-1)2>=0
do đó (a-1)2+(b-1)2+(c-1)2>=0 với mọi a,b,c (2)
từ (1) và (2)=>a-1=b-1=c-1=0
=>a=b=c=1 (dpcm)