K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(A=\frac{2n+5}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=\frac{3}{n+1}\)

=> n + 1 \(\in\)Ư(3) = {1;-1;3;-3}

Lập bảng 

n + 11-13-3
n0-22-4

Vì n \(\in Z\) => tm 

b, Gợi ý : A thuộc lớn nhất, tính bth ko sao e nhé !

c, \(A=\frac{n+7}{n-2}=\frac{n-2+9}{n-2}=\frac{9}{n-2}\)

Để A nguyên .... làm tiếp e nhé !

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

17 tháng 2 2020

Bài 1 ( x - 7 ) ( x + 3 ) < 0

\(\Rightarrow\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}}\)   hoặc \(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}}\)  hoăc \(\hept{\begin{cases}x>7\\x< -3\end{cases}}\)  ( vô lí )

\(\Rightarrow\)  - 3 < x < 7

Mà \(x\in Z\) 

\(\Rightarrow x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)

Vậy \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)

Bài 2 n - 1 là bội của n + 5 và n + 5 là bội của n - 1 

Là 2 bài riêng biệt ak ????

Bài 3 : Tìm a,b. thuộc Z biết ab = 24 ; a + b = -10  ~~~~~ Lát nghĩ

Bài 4 : Tìm các cặp số nguyên có tổng bằng tích  ~~~~~ tối lm

17 tháng 2 2020

@Chiyuki Fujito : Bài 2 là một đề bạn nhé ! 

14 tháng 1 2016

1 số nguyên tố

2 n = 1 ; n = 2

 

14 tháng 1 2016

Giải thích ra giùm mình với!

14 tháng 7 2016

a) n + 1 chia hết cho n - 3

=> n - 3+ 4 chia hết cho n - 3

=> 4 chia hết cho n-3

=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}

thế n-3 vô từng trường hợp các ước của 4 rồi tim x

b) 2n + 5 chia hết cho n + 1

=> 2n + 2 + 3 chia hết cho n + 1

=> 2(n+1) + 3 chia hết cho n +1

=> 3 chia hết cho n + 1

=> n + 1 thuộc Ư(3) = {1;-1;3;-3}

tìm x giống bài a

c) 10n chia hết cho 5n - 3

=> 10n - 6 + 6 chia hết cho 5n - 3

=> 2.(5n - 3) + 6 chia hết cho 5n - 3

=> 6 chia hết cho 5n - 3

=> 5n - 3 thuộc Ư(6) = {1;-1;2;-2;3;-3;6;-6}

tìm x giống bài a

14 tháng 7 2016

a. n+1=(n-3)+4

(n+1) chia hết cho (n-3) thì (n-3)+4 chia hết cho (n-3)

Ta có (n-3) chia hết cho (n-3)

Suy ra 4 phải chia hết cho (n-3)

Vậy n= -1 ,1 , 2 , 4

b. 2n+5=2n+2+3=2(n+1)+3

tương tự câu a ta có 2(n+1) chia hết cho (n+1)

Suy ra 3 phải chia hết cho (n+1)

Vậy n=-2,0,2

c.10n=10n-6+6=2(5n-3) +6

Tiếp tục àm tương tự như câu a và b

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản